Investigation of Equivalence Ratio Fluctuations on the Dynamics of Turbulent Lean Premixed Methane/Air Flames with a Linear-Eddy Model

Author(s):  
Michael Oevermann ◽  
Christina Schrödinger ◽  
Christian O. Paschereit
Author(s):  
Nasser Seraj Mehdizadeh ◽  
Nozar Akbari

Lean premixed combustion is widely used in recent years as a method to achieve the environmental standards with regard to NOx emission. In spite of the mentioned advantage, premixed combustion systems, with equivalence ratios less than one, are susceptible to the combustion instability. To study the lean combustion instability, by experiments, one premixed combustion setup, equipped with reactant supplying system, is designed and manufactured in Amirkabir University of Technology. In this research, gaseous propane is introduced as fuel and several experiments are performed at nearly atmospheric pressure, with equivalence ratios within the range of 0.7 to 1.5. In this experiments fuel mass flow rate is varied between 2 and 4 gr/s. Unstable operating condition has been observed in combustion chamber when equivalence ratio is less than one. To distinguish the combustion instability for various operating conditions, probability density functions, spectral diagrams, and space distribution of pressure oscillations, along with Rayleigh Criterion, are utilized. Accordingly, effect of equivalence ratio on stabilizing the unstable combustion system is investigated. Moreover, convective delay time is calculated for all experiments and the results are compared with Rayleigh Criterion. This comparison has shown good agreement the experimental results and Rayleigh Criterion. Finally, stability limits are identified based on inlet mass flow rate and equivalence ratio.


Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
Vitali Ovcharenko ◽  
Leonid Rosentsvit ◽  
...  

Lean premixed combustion is one of the widely used methods for NOx reduction in gas turbines (GT). When this method is used combustion takes place under low Equivalence Ratio (ER) and at relatively low combustion temperature. While reducing temperature decreases NOx formation, lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and deteriorates combustion stability. The objective of the present work was to study the possibility to decrease the lower limit of the stable combustion regime by the injection of free radicals into the combustion zone. A lean premixed gaseous combustor was designed to include a circumferential concentric pilot flame. The pilot combustor operates under rich fuel to air ratio, therefore it generates a significant amount of reactive radicals. The experiments as well as CFD and CHEMKIN simulations showed that despite of the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection from the pilot combustor has the potential to lower the limit of the global ER (and temperatures) while maintaining stable combustion. Spectrometric measurements along the combustor showed that the fuel-rich pilot flame generates free radicals that augment combustion stability. In order to study the relevant mechanisms responsible for combustion stabilization, CHEMKIN simulations were performed. The developed chemical network model took into account some of the basic parameters of the combustion process: ER, residence time, and the distribution of the reactances along the combustor. The CHEMKIN simulations showed satisfactory agreement with experimental results.


Author(s):  
Thoralf G. Reichel ◽  
Katharina Goeckeler ◽  
Oliver Paschereit

In the context of lean premixed combustion, the prevention of upstream flame propagation in the premixing zone, referred to as flashback, is a crucial challenge related to the application of hydrogen as a fuel for gas turbines. The location of flame anchoring and its impact on flashback tendencies in a technically premixed, swirl-stabilized hydrogen burner are investigated experimentally at atmospheric pressure conditions using planar laser-induced fluorescence of hydroxyl radicals (OH-PLIF). The inlet conditions are systematically varied with respect to equivalence ratio (ϕ = 0.2–1.0), bulk air velocity u0 = 30–90m/s and burner preheat temperature ranging from 300K to 700K. The burner is mounted in the atmospheric combustion test rig at the HFI, firing at a power of up to 220 kW into a 105 mm diameter quartz cylinder, which provides optical access to the flame region. The experiments were performed using an in-house burner design that previously proved to be highly resistant against flashback occurrence by applying the axial air injection strategy. Axial air injection constitutes a non-swirling air jet on the central axis of the radial swirl generator, thus, influencing the vortex breakdown position. High axial air injection yields excellent flashback resistance and is used to investigate the whole inlet parameter space. In order to trigger flashback, the amount of axially injected air is reduced, which allowed to investigate the near flashback flame behavior. Results show that both, fuel momentum of hydrogen and axial air injection alter the isothermal flow field and cause a downstream shift of the axial flame front location. Such a shift is proven beneficial for flashback resistance. This effect was quantified by applying an edge detection algorithm to the OH-PLIF images, in order to extract the location of maximum flame front likelihood xF. The temperature and equivalence ratio dependence of the parameters xF is identified to be governed by the momentum ratio between fuel and air flow J. These results contribute to the understanding of the superior flashback limits of configurations applying high amounts of axial air injection over medium or none air injection.


Author(s):  
Donald M. Newburry ◽  
Arthur M. Mellor

The semi–empirical characteristic time model (CTM) has been used previously to correlate and predict emissions data from conventional diffusion flame, gas turbine combustors. The form of the model equation was derived for NOx emissions from laboratory flameholders and then extended to conventional gas turbine combustors. The model relates emissions to the characteristic times of distinct combustion subprocesses, with empirically determined model constants. In this paper, a new model is developed for lean premixed (LP) NOx emissions from a perforated plate flameholder combustor burning propane fuel. Several modifications to the diffusion flame CTM were required, including a new activation energy and a more complicated dependence on combustor pressure. Appropriate model constants were determined from the data, and the correlation results are reasonable. An attempt was made to validate the new model with LP NOx data for a different but geometrically similar flameholder operating at lower pressures. The predictions are good for the low equivalence ratio data. However, a systematic error in the reported equivalence ratios may be adversely affecting the predictions of the higher equivalence ratio data through the calculated adiabatic flame temperature.


Author(s):  
Ashish Vashishtha ◽  
Sajjad Yousefian ◽  
Graham Goldin ◽  
Karin Frojd ◽  
Sandeep Jella ◽  
...  

Abstract The main motivation of this study is to investigate detailed NOx and CO formation in high-pressure dump combustor fired with lean premixed methane-air mixture using CFD-CRN hybrid approach. Further, this study is extended to investigate the effect of H2 enrichment on emission formation in the same combustor. Three-dimensional steady RANS CFD simulations have been performed using a Flamelet Generated Manifold (FGM) model in Simcenter STAR-CCM+ 2019.2 with the DRM22 reduced mechanism. The CFD simulations have been modelled along with all three heat transfers modes: conduction, convection and radiation. The conjugate heat transfer (CHT) approach and participating media radiation modelling have been used here. Initially, CFD simulations are performed for five lean equivalence ratios (ϕ = 0.43–0.55, Tinlet = 673 K, Vinlet = 40 m/s) of pure methane-air mixture operating at 5 bar. The exit temperature and flame-length are compared with available experimental data. The automatic chemical reactor network has been constructed from CFD data and solved using the recently developed reactor network module of Simcenter STAR-CCM+ 2019.2 in a single framework for each cases. It is found out that the CRNs up to 10,000 PSRs can provide adequate accuracy in exit NOx predictions compared to experiments for pure methane cases. The contribution of NOx formation pathway, changes from N2O intermediate to thermal NO as equivalence ratio increases. Further studies are performed for two equivalence ratios (ϕ = 0.43 and 0.50 to simulate the impact of H2 addition (up to 40% by volume) on NOx formation pathways and CO emission. It is found out here that the contribution from NNH pathway increases for leaner equivalence ratio cases (ϕ = 0.43), while thermal pathway slightly increases for ϕ = 0.50 with increase in H2 content from 0% to 40%.


Author(s):  
Weijie Liu ◽  
Bing Ge ◽  
Yinshen Tian ◽  
Yongwen Yuan ◽  
Shusheng Zang ◽  
...  

This paper presents large-eddy simulations (LES) and laser diagnostic experiments of low-swirl lean premixed methane/air flames in a multi-nozzle combustor including five nozzles with the same structure. OH Planar Laser Induced Fluorescence (PLIF) is used to observe flame shapes and identify main reaction zones. NOx and CO emissions are also recorded during the experiment. The flows and flames are studied at different equivalence ratios ranging from 0.5 to 0.8, while the inlet velocity is fixed at 6.2 m/s. Results show that the neighboring swirling flows interact with each other, generating a highly turbulent mixing zone where intensive reactions take place. The flame is stabilized above the nozzle rim and its liftoff height decreases with increasing equivalence ratio. The center flow is confined and distorted by the neighboring flows, resulting in instabilities of the center flame. Mean OH radical images reveals that the center nozzle flame is extinguished when equivalence ratio is equals to 0.5, which is successfully predicted by LES. In addition, NOx emissions show log-linear dependency on the adiabatic flame temperature, while the CO emissions remain lower than 10 ppm. NOx emissions for multi-nozzle flame are less sensitive to the flame temperature than that for single nozzle. These results demonstrate that the low-swirl multi-nozzle concept is a promising solution to achieve stable combustion with ultra-low emissions in gas turbines.


Author(s):  
Owen S. Graham ◽  
Ann P. Dowling

The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Manuel Vogel ◽  
Michael Bachfischer ◽  
Jan Kaufmann ◽  
Thomas Sattelmayer

Abstract In this study a measurement technique for determination of equivalence ratio fluctuations from flame chemiluminescence in a kerosene-fuelled lean premixed combustor under atmospheric conditions is presented. Firstly, fundamental investigations into the relationship between the ratio of different chemiluminescence signals and the equivalence ratio are carried out using an imaging spectrometer. The chemiluminescence intensity is recorded for a wide range of equivalence ratios and fuel mass flows during steady state operation. The spectra show that the CH*/OH* ratio depends linearly on the equivalence ratio and is independent of the mass flow in the investigated range. Moreover, the background radiation has no influence on the monotonous trend of the CH*/OH* ratio for kerosene combustion. This interesting finding opens up new possibilities for passive optical measurement of the equivalence ratio in kerosene flames. Bandpass-filtered phase-correlated images of OH* and CH* chemiluminescence of an acoustically excited flame are taken simultaneously on one camera chip using an image doubler. After distortion correction, the image pair is used to calculate the global equivalence ratio from the CH*/OH* ratio. Based on the calibration chart derived in stationary operation, phase-resolved equivalence ratio perturbations are determined during acoustic excitation. The presented technique allows a quantitative measurement of equivalence ratio fluctuations in spray combustion and can therefore provide a better understanding of the fundamental mechanisms of thermoacoustic instabilities triggered by equivalence ratio fluctuations. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document