Enhancing Soil Suppressiveness Using Compost and Compost Tea

Author(s):  
Chaney C. G. St. Martin
2020 ◽  
Vol 30 (4) ◽  
pp. 335-343
Author(s):  
R Ashrafi ◽  
RM Saiem ◽  
M Kamruzzaman ◽  
MSAA Mamun ◽  
HA Begum

The use of agricultural waste is of great interest to sustainable agriculture. An investigation was carried out to evaluate the effects of compost and compost tea made from agricultural waste rice straw on the yield and quality of two horticultural crops strawberry and tomato. In strawberry experiment, six treatments were considered which wereT1: 100% soil (as a control), T2: 80% soil + 20% compost, T3: 60% soil + 40% compost, T4: 40% soil + 60% compost, T5: 20% soil + 80% compost & T6: 100% compost. Results revealed that number of fruit, fruit yield and total sugar (%)was increased with the increasing level of compost up to 80% after that decreased at 100% compost. The treatment T5: 20% soil + 80% compost gave the best results among the treatments to grow strawberry with good yield (185.3 g/plant) and sweetness (total sugar 5.19%). On the other hand, six treatments i.e. T1: Control, T2: Compost (5 t/ha), T3: Compost tea (50% concentration), T4: Compost (5 t/ha) + Compost tea (50% concentration), T5: Compost tea (100% concentration) and T6: Compost (5t/ha) + Compost tea (100% concentration) were considered in tomato experiment. As a result, it was observed that combined application of compost (5 t/ha) along with compost tea (100% conc.) (T6) gave the highest yield of tomato than not only control (T1) but also single application of compost or compost tea (T2, T3, T4&T5). Level of compost tea concentration also showed significant effect on fruit yield of tomato. Comparing between treatment T4 and T6, fruit yield was found higher (1027.67 g/plant) in treatment T6: Compost (5t/ha) + Compost tea (100% conc.) than 961.3 g/plant in T4: Compost (5 t/ha) + Compost tea (50% conc.). So, it could be summarized that use of rice straw as compost and compost tea affects positively both in two experiments. The results of this study confirm the beneficial effects of compost to increase the yield and sweetness of strawberry and combination of compost and compost tea to increase the yield of tomato. Progressive Agriculture 30 (4): 335-343, 2019


Author(s):  
L. M. Manici ◽  
F. Caputo ◽  
G. A. Cappelli ◽  
E. Ceotto

Abstract Soil suppressiveness which is the natural ability of soil to support optimal plant growth and health is the resultant of multiple soil microbial components; which implies many difficulties when estimating this soil condition. Microbial benefits for plant health from repeated digestate applications were assessed in three experimental sites surrounding anaerobic biogas plants in an intensively cultivated area of northern Italy. A 2-yr trial was performed in 2017 and 2018 by performing an in-pot plant growth assay, using soil samples taken from two fields for each experimental site, of which one had been repeatedly amended with anaerobic biogas digestate and the other had not. These fields were similar in management and crop sequences (maize was the recurrent crop) for the last 10 yr. Plant growth response in the bioassay was expressed as plant biomass production, root colonization frequency by soil-borne fungi were estimated to evaluate the impact of soil-borne pathogens on plant growth, abundance of Pseudomonas and actinomycetes populations in rhizosphere were estimated as beneficial soil microbial indicators. Repeated soil amendment with digestate increased significantly soil capacity to support plant biomass production as compared to unamended control in both the years. Findings supported evidence that this increase was principally attributable to a higher natural ability of digestate-amended soils to reduce root infection by saprophytic soil-borne pathogens whose inoculum was increased by the recurrent maize cultivation. Pseudomonas and actinomycetes were always more abundant in digestate-amended soils suggesting that both these large bacterial groups were involved in the increase of their natural capacity to control soil-borne pathogens (soil suppressiveness).


2009 ◽  
Vol 60 (10) ◽  
pp. 943 ◽  
Author(s):  
Z. N. Nie ◽  
R. P. Zollinger ◽  
J. L. Jacobs

This glasshouse study aimed to examine the performance of 7 Australian native grasses and their responses to different cutting and fertiliser regimes. The 7 native grasses comprised 2 wallaby grasses (Austrodanthonia bipartita cv. Bunderra and Austrodanthonia setacea, Woodhouse ecotype), 2 weeping grasses (Microlaena stipoides cv. Bremmer and ecotype Coleraine), 1 spear grass (Austrostipa mollis, ecotype Lexton), 1 red-leg grass (Bothriochlora macra, ecotype Hamilton), and 1 kangaroo grass (Themeda triandra, ecotype Yass). For each of the 7 grasses, 64 pots each containing 9 plants were arranged in a 4 cutting intensity × 4 fertiliser level factorial design with 4 replicates. The cutting intensity treatments involved (1) cutting to 2 cm at 3–5-week intervals; (2) cutting to 5 cm at 3–5-week intervals; (3) cutting to 10 cm at 3–5-week intervals; and (4) cutting to 2 cm based on leaf stage. The fertiliser regimes included low, medium, and high fertility treatments by applying various rates of phosphorus, and the treatment with addition of compost tea. Herbage accumulation, shoot and root growth, plant survival and tiller density, nutritive characteristics, and leaf stage were monitored. All grass lines produced the lowest herbage mass when cut to 2 cm above ground at 3–5-week intervals. Cutting to 5 cm or to 2 cm based on leaf stage favoured herbage accumulation of Lexton spear grass, Hamilton red grass, Yass kangaroo grass, and Coleraine weeping grass. Cutting to 10 cm favoured herbage accumulation of Bremmer weeping grass and wallaby grass. Cutting to 10 cm together with high fertiliser application considerably increased herbage accumulation in comparison with treatments with low fertiliser application or with compost tea. Shoot and root biomass were maximised when plants were cut to 10 cm above ground, except Lexton spear grass which had highest root biomass when plants were managed based on leaf stage. Plant survival was dramatically affected by defoliation intensity and varied among species. Plant survival declined when plants were cut to 2 cm above ground for most species. Overall, native grasses were considered to have good nutritive characteristics with crude protein ranging from 17 to 22% and neutral detergent fibre from 48 to 60%. Results from this study indicate that it may be possible to use leaf stage as a determinant for the commencement of grazing native species. Optimum leaf stages that could be used as a grazing management guide were on average 3.4 for wallaby grass, 4.2 for weeping grass, 3 for spear grass, 3.8 for red-leg grass, and 4.4 for kangaroo grass. However, further work is required to better define this for likely seasonal variation between C3 and C4 species.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 683
Author(s):  
Edit Gorliczay ◽  
Imre Boczonádi ◽  
Nikolett Éva Kiss ◽  
Florence Alexandra Tóth ◽  
Sándor Attila Pabar ◽  
...  

Due to the intensification of the poultry sector, poultry manure is being produced in increasing quantities, and its on-site management is becoming a critical problem. Animal health problems can be solved by stricter the veterinary and environmental standards. The off-site coupled industrial chicken manure recycling technology (Hosoya compost tea) fundamentally affects the agricultural value of new organic-based products. Due to the limited information available on manure recycling technology-related microbiological changes, this was examined in this study. A pot experiment with a pepper test plant was set up, using two different soils (Arenosol, slightly humous Arenosol) and two different doses (irrigation once a week with 40 mL of compost tea: dose 1, D1; irrigation twice a week with 40 mL of compost tea: dose 2, D2) of compost tea. Compost tea raw materials, compost tea, and compost tea treated soils were tested. The products (granulated manure, compost tea) and their effects were characterized by the following parameters: aerobic bacterial count (log CFU/g), fluorescein diacetate activity (3′,6′-diacetylfluorescein, FDA, µg Fl/g soil), glucosidase enzyme activity (GlA; PNP/µmol/g), and identification of microorganisms in compost tea with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, we aimed to investigate how the microbiological indicators tested, and the effect of compost tea on the tested plant, could be interpreted. Based on our results, the microbiological characteristics of the treated soils showed an increase in enzyme activity, in the case of FDA an increase +0.26 μg Fl/g soil at D1, while the GlA increased +1.28 PNP/µmol/g with slightly humous Arenosol soil and increased +2.44 PNP/µmol/g at D1; and the aerobic bacterial count increased +0.15 log CFU/g at D2, +0.35 log CFU/g with slightly humous Arenosol and +0.85 log CFU/g at W8. MALDI-TOF MS results showed that the dominant bacterial genera analyzed were Bacillus sp., Lysinibacillus sp., and Pseudomonas sp. Overall, the microbial inducers we investigated could be a good alternative for evaluating the effects of compost solutions in soil–plant systems. In both soil types, the total chlorophyll content of compost tea-treated pepper (Capsicum annuum L.) had increased as a result of compost tea. D1 is recommended for Arenosol and, D2 for slightly humous Arenosol soil.


2006 ◽  
Vol 96 (12) ◽  
pp. 1372-1379 ◽  
Author(s):  
Masahiro Kasuya ◽  
Andriantsoa R. Olivier ◽  
Yoko Ota ◽  
Motoaki Tojo ◽  
Hitoshi Honjo ◽  
...  

Suppressive effects of soil amendment with residues of 12 cultivars of Brassica rapa on damping-off of sugar beet were evaluated in soils infested with Rhizoctonia solani. Residues of clover and peanut were tested as noncruciferous controls. The incidence of damping-off was significantly and consistently suppressed in the soils amended with residues of clover, peanut, and B. rapa subsp. rapifera ‘Saori’, but only the volatile substance produced from water-imbibed residue of cv. Saori exhibited a distinct inhibitory effect on mycelial growth of R. solani. Nonetheless, disease suppression in such residue-amended soils was diminished or nullified when antibacterial antibiotics were applied to the soils, suggesting that proliferation of antagonistic bacteria resident to the soils were responsible for disease suppression. When the seed (pericarps) colonized by R. solani in the infested soil without residues were replanted into the soils amended with such residues, damping-off was suppressed in all cases. In contrast, when seed that had been colonized by microorganisms in the soils containing the residues were replanted into the infested soil, damping-off was not suppressed. The evidence indicates that the laimosphere, but not the spermosphere, is the site for the antagonistic microbial interaction, which is the chief principle of soil suppressiveness against Rhizoctonia damping-off.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Silvana Pompéia Val-Moraes ◽  
Eliamar Aparecida Nascimbem Pedrinho ◽  
Eliana Gertrudes Macedo Lemos ◽  
Lucia Maria Carareto-Alves

Fungi constitute an important part of the soil ecosystem, playing key roles in decomposition, cycling processes, and biotic interactions. Molecular methods have been used to assess fungal communities giving a more realistic view of their diversity. For this purpose, total DNA was extracted from bulk soils cultivated with tomato (STC), vegetables (SHC), and native forest (SMS) from three sites of the Taquara Branca river basin in Sumaré County, São Paulo State, Brazil. This metagenomic DNA was used as a template to amplify fungal 18S rDNA sequences, and libraries were constructed inEscherichia coliby cloning PCR products. The plasmid inserts were sequenced and compared to known rDNA sequences in the GenBank database. Of the sequenced clones, 22 were obtained from the SMS sample, 18 from the SHC sample, and 6 from the STC sample. Although most of the clone sequences did not match the sequences present in the database, individual amplified sequences matched with Glomeromycota (SMS), Fungi incertae sedis (SMS), and Neocallimastigomycota (SHC). Most of the sequences from the amplified taxa represent uncultured fungi. The molecular analysis of variance (AMOVA) indicated that fluctuations observed of haplotypes in the composition may be related to herbicide application.


2018 ◽  
Vol 12 (5) ◽  
pp. 609-618 ◽  
Author(s):  
Heba Ahmed Khalil Ibrahim ◽  
Mohamed Abdel aziz Balah
Keyword(s):  

2011 ◽  
Vol 2 (7) ◽  
pp. 935-947
Author(s):  
M. Mostafa ◽  
E. El-Baz ◽  
A. Abd El-Wahab ◽  
Asmaa Omar

Sign in / Sign up

Export Citation Format

Share Document