Using the Formal Representations of “Elementary Events” to Set Up Computational Models of Full “Narratives”

Author(s):  
Gian Piero Zarri
Author(s):  
J. Adin Mann ◽  
Daniel Eilers ◽  
Trent Jackson ◽  
Rob Swindell ◽  
Christopher Middleton ◽  
...  

A consortium of companies is collaborating in a Joint Industry Project (JIP) for Acoustic Induced Vibration (AIV). Laboratory testing is one of the work areas of the JIP. The goals of the tests are to evaluate typical pipe fittings for AIV induced fatigue, to rank order their AIV risk and to obtain data for validation of computational models. An NPS6x8 (6R8) pressure safety valve was the flow and noise input to a 10S piping system, which consisted of an NPS12 tailpipe input into an NPS12x20 tee. Small bore connectors (SBCs) were included in both the NPS12 tailpipe and the NPS20 header. The type of fitting used as the connection between the SBC and the pipe was varied. The system was operating in a Carucci-Mueller acoustic power of around 175 dB. Vibration acceleration response of the system was measured, and dynamic strain data was also gathered to evaluate fatigue life. The piping and data acquisition system setup will be discussed along with the type of results that are being obtained.


Author(s):  
K. S. Galitskov ◽  
O. V. Samokhvalov ◽  
A. S. Fadeev

The paper goes into peculiarities of using developed mathematical models of ceramsite burning and computational models created on their basis. The work is done in the light of analysis and synthesis of multivariate control system of kiln angular velocity and kiln charge with volumetric thermal capacity burners. It is shown that computational models of burning as an object of control are problem-oriented on producing ceramsite with specified density. Mathematical model of ceramsite burning process as an object with distributed parameters is synthesized. The transition from model with distributed parameters to the mode with lumped parameters is performed. Then the authors used a model with three bearing cross-sections along Z-axis in Matlab software and created a computational model of multivariate object of control with inter-channel connections. The paper presents experimental computational set up methods and methods of ceramsite burning optimal curve identification on the criterion of minimizing energy consumption for burning. The developed method of staging computational experiments makes it possible to predict the strength of ceramsite if values of control actions are known. The results of modeling help create methodology of choosing optimal modes of ceramsite burning with the required mark of strength and with minimum energy consumption.


2014 ◽  
Vol 24 (02) ◽  
pp. 1430004 ◽  
Author(s):  
MARC KOPPERT ◽  
STILIYAN KALITZIN ◽  
DEMETRIOS VELIS ◽  
FERNANDO LOPES DA SILVA ◽  
MAX A. VIERGEVER

In this study, we investigate the correspondence between dynamic patterns of behavior in two types of computational models of neuronal activity. The first model type is the realistic neuronal model; the second model type is the phenomenological or analytical model. In the simplest model set-up of two interconnected units, we define a parameter space for both types of systems where their behavior is similar. Next we expand the analytical model to two sets of 90 fully interconnected units with some overlap, which can display multi-stable behavior. This system can be in three classes of states: (i) a class consisting of a single resting state, where all units of a set are in steady state, (ii) a class consisting of multiple preserving states, where subsets of the units of a set participate in limit cycle, and (iii) a class consisting of a single saturated state, where all units of a set are recruited in a global limit cycle. In the third and final part of the work, we demonstrate that phase synchronization of units can be detected by a single output unit.


Author(s):  
A. Andreini ◽  
C. Bianchini ◽  
B. Facchini ◽  
A. Peschiulli ◽  
I. Vitale

Effusion cooled liners, commonly used in gas turbine combustion chambers to reduce wall temperature, may also help reducing the propagation of pressure fluctuations due to thermoacoustic instabilities. Large Eddy Simulations were conducted to accurately model the flow field and the acoustic response of effusion plates subject to a mean bias flow under external sinusoidal forcing. Even though existing lower order computational models showed good predicting capabilities, it is interesting to verify directly the influence of those parameters such as the staggered arrangement, the hole inclination, the presence of a grazing flow and the level of bias flow, which are not fully included in those models. A first bi-periodic single hole configuration with normal acoustic forcing was selected to investigate the acousting behavior with varying inclination angle, bias and grazing flow. 90° and 30° perforations were simulated for bias flow Mach number in the range 0.05–0.1 and grazing flow between 0 and 0.08. Those conditions were chosen to expand the knowledge of acoustic properties towards actual liners working conditions. A second more computationally expensive set-up, including 4 inclined holes at 30°, focused on the damping of parallel to the plate waves. Details of the computational methods implemented in the general purpose open-source unstructured CFD code OpenFOAM® exploited to conduct this analysis are reported together with an analysis of the results obtained from the acoustic computations both regarding the flow field generated and the absorption and energy dissipation coefficient.


2019 ◽  
Vol 19 (1) ◽  
pp. 58-63 ◽  
Author(s):  
R. Ciucu ◽  
F.C. Adochiei ◽  
Ioana-Raluca Adochiei ◽  
F. Argatu ◽  
G.C. Seriţan ◽  
...  

AbstractDeveloping Artificial Intelligence is a labor intensive task. It implies both storage and computational resources. In this paper, we present a state-of-the-art service based infrastructure for deploying, managing and serving computational models alongside their respective data-sets and virtual environments. Our architecture uses key-based values to store specific graphs and datasets into memory for fast deployment and model training, furthermore leveraging the need for manual data reduction in the drafting and retraining stages. To develop the platform, we used clustering and orchestration to set up services and containers that allow deployment within seconds. In this article, we cover high performance computing concepts such as swarming, GPU resource management for model implementation in production environments with emphasis on standardized development to reduce integration tasks and performance optimization.


2017 ◽  
Vol 48 (1) ◽  
pp. 49-52
Author(s):  
Stefano Benni ◽  
Enrica Santolini ◽  
Alberto Barbaresi ◽  
Daniele Torreggiani ◽  
Patrizia Tassinari

CFD has been increasingly applied to greenhouses to optimise indoor environmental conditions for cultivation and management. Numerical simulations have proved fundamental for the enhancement of energy-efficient design criteria and management procedures. The objective of the study is the comparison between different computational approaches for the study of airflow patterns in a representative study case of a glass greenhouse, also through the calibration of the models and the validation of simulation results against experimental data. A three-span greenhouse of about 300 m2 located in Emilia-Romagna (Italy) has been considered as study case. Several analyses with the same boundary and initial conditions were performed using two codes, broadly used for research and design purposes. With both programs, 2D or 3D models have been used and, for every case, the grid convergence was verified by performing multiple steady state analyses with increasingly finer meshes. The results led to define the most suitable solutions to set up computational models for the simulation of airflow patterns inside a greenhouse. The study provided a preliminary outline of the differences due to the adoption of various computational approaches characterised by different levels of accuracy and complexity. The results indicate the advisability of further developing the research by carrying out deeper experimental insights necessary to quantify more in detail the validity and the reliability of the adopted analytical methodologies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250032
Author(s):  
Yu-Hang Zhang ◽  
Zhandong Li ◽  
Tao Zeng ◽  
Lei Chen ◽  
Hao Li ◽  
...  

Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
O.L. Krivanek ◽  
J. TaftØ

It is well known that a standing electron wavefield can be set up in a crystal such that its intensity peaks at the atomic sites or between the sites or in the case of more complex crystal, at one or another type of a site. The effect is usually referred to as channelling but this term is not entirely appropriate; by analogy with the more established particle channelling, electrons would have to be described as channelling either through the channels or through the channel walls, depending on the diffraction conditions.


Sign in / Sign up

Export Citation Format

Share Document