Smart Stormwater Management in Urban Areas by Roofs Greening

Author(s):  
Mirka Mobilia ◽  
Antonia Longobardi
2021 ◽  
Vol 13 (3) ◽  
pp. 1443
Author(s):  
Fawaz Alharbi ◽  
Meshal Almoshaogeh ◽  
Md. Shafiquzzaman ◽  
Husnain Haider ◽  
Md. Rafiquzzaman ◽  
...  

Permeable pavement provides sustainable solutions for urban stormwater management. In this research, the potential of rice bran mixed porous clay bricks were evaluated for permeable pavements. Physical, mechanical and hydrological properties along with stormwater treatment capabilities of the brick samples were assessed. The study found that ratio of rice bran and clay soil has significant impacts on the properties of the produced bricks. Water adsorption and porosity increased with increasing rice bran ratio. Compressive strength of brick samples decreased from 29.6 MPa to 6.9 MPa when the ratio of rice bran was increased from 0% to 20%. The permeability coefficient increased from 4 × 10−4 to 1.39 × 10−2 mm/s with the increase in rice bran from 0% to 30%. The preamble clay bricks were efficient to remove turbidity, total suspended solids (TSS), five days’ biochemical oxygen demand (BOD5), and heavy metals (Mn, Cu, and Zn) from stormwater to meet the World Health Organization (WHO) standard for wastewater reuse application. The bricks with ≤10% of rice bran achieved the American Society for Testing and Materials (ASTM) standard of the desire compressive strength and permeability coefficient for pedestrian and light traffic pavements. The porous bricks prepared in this study can be used to construct permeable pavements and would be a sustainable low impact developments technique for stormwater management in urban areas.


2021 ◽  
Vol 13 (4) ◽  
pp. 1972
Author(s):  
Jeremy Wright ◽  
Jeremy Lytle ◽  
Devon Santillo ◽  
Luzalen Marcos ◽  
Kristiina Valter Mai

Urban densification and climate change are creating a multitude of issues for cities around the globe. Contributing factors include increased impervious surfaces that result in poor stormwater management, rising urban temperatures, poor air quality, and a lack of available green space. In the context of volatile weather, there are growing concerns regarding the effects of increased intense rainfalls and how they affect highly populated areas. Green roofs are becoming a stormwater management tool, occupying a growing area of urban roof space in many developed cities. In addition to the water-centric approach to the implementation of green roofs, these systems offer a multitude of benefits across the urban water–energy–food nexus. This paper provides insight to green roof systems available that can be utilized as tools to mitigate the effects of climate change in urbanized areas. A new array of green roof testing modules is presented along with research methods employed to address current issues related to food, energy and water performance optimization. Rainwater runoff after three rain events was observed to be reduced commensurate with the presence of a blue roof retention membrane in the testbed, the growing media depth and type, as well as the productive nature of the plants in the testbed. Preliminary observations indicate that more productive green roof systems may have increasingly positive benefits across the water–energy–food nexus in dense urban areas that are vulnerable to climate disruption.


2021 ◽  
Author(s):  
Concepcion Pla ◽  
Javier Valdes-Abellan ◽  
Miguel Angel Pardo ◽  
Maria Jose Moya-Llamas ◽  
David Benavente

<p>The impervious nature of urban areas is mostly responsible for urban flooding, runoff water pollution and the interception of groundwater recharge. Green infrastructure and sustainable urban drainage systems combine natural and artificial measures to mitigate the abovementioned problems, improving stormwater management and simultaneously increasing the environmental values of urban areas. The actual rate of urban growth in many urban areas requires the enhancement and optimization of stormwater management infrastructures to integrate the territorial development with the natural processes. Regarding the quality of runoff stormwater, heavy metals are critical for their impact on human health and ecological systems, even more if we consider the cumulative effect that they produce on biota. Thus, innovative stormwater management approaches must consider new solutions to deal with heavy metal pollution problems caused by runoff. In this study, we propose the employment of Arlita<sup>®</sup> and Filtralite<sup>®</sup>, two kind of lightweight aggregates obtained from expanded clays, to remove heavy metal concentration from runoff stormwater. Laboratory experiments were developed to evaluate the removal rate of different heavy metals existent in runoff stormwater. The lightweight aggregates acted as filter materials in column experiments to quantify their removal capacity. In addition, batch tests were also developed to evaluate the exhaustive capacity of the materials. Results from the study confirmed the efficiency of the selected lightweight aggregates to reduce the heavy metals concentration by up to 90% in urban stormwater runoff.</p>


2019 ◽  
Vol 17 (7) ◽  
pp. 587-597 ◽  
Author(s):  
Ambika Khadka ◽  
Teemu Kokkonen ◽  
Tero J. Niemi ◽  
Elisa Lähde ◽  
Nora Sillanpää ◽  
...  

2019 ◽  
pp. 261-269
Author(s):  
Janusz Niemczynowicz

Stormwater system are necessary to convey urban runoff from a city in order to avoid floods in urban areas. Large water volumes of urban runoff bring important changes to natural water flow regime not only in a city but also downstream bringing pollution to entire river basin .The paper gives the rationale and principles of new development within urban storrnwater management. Two detailed application examples of new storrnwater management are presented in the paper.


Author(s):  
Yixin Zhang ◽  
Weihan Zhao ◽  
Xue Chen ◽  
Changhyun Jun ◽  
Jianli Hao ◽  
...  

Stormwater management is a key urban issue in the world, in line with the global issues of urban sprawl and climate change. It is urgent to investigate the effectiveness in managing stormwater with different strategies for maintain urban resilience. A method based on a storm water management model (SWMM) was developed for assessing the control of stormwater runoff volume and the percentage removal of suspended solids by implementing a Sponge City strategy. An interdisciplinary approach was adopted incorporating Low Impact Development (LID) with urban Green Infrastructure and Gray Infrastructure paradigms in a typical old residential community in Suzhou, China. Four types of sponge facilities for reducing stormwater runoff were bio-retention cells, permeable pavements, grassed pitches, and stormwater gardens. The simulation results indicate that the stormwater pipe system can meet the management standard for storms with a five-year recurrence interval. The volume capture ratio of annual runoff is 91% and the reduction rate of suspended solids is 56%. This study demonstrates that Sponge City strategy is an effective approach for managing stormwater, particularly in old and densely populated urban areas. Implementing spongy facilities with a LID strategy for stormwater management can significantly enhance urban water resilience and increase ecosystem services.


2020 ◽  
Vol 12 (14) ◽  
pp. 5859
Author(s):  
Leticia Karine Sanches Brito ◽  
Maria Elisa Leite Costa ◽  
Sergio Koide

In Brazil, stormwater management systems are usually deficient and very commonly implemented after the urban areas have settled. In Brasilia, the Federal capital of Brazil, this problem is aggravated due to the fact that the rainy and dry seasons are very well defined, thereby increasing the importance of groundwater recharge as an ecosystem service. This research aims to evaluate the impact of urban structure types and topographies in stormwater management and three ecosystem services: groundwater recharge, flooding, and water quality. The urban patterns studied included mixed residential areas with two block positions (orthogonal and parallel to the topography) and a single-family house with low density. The studied landforms include a divergent-convergent surface and a flat hillslope with high slope taxa—strictly convergent and strictly divergent surfaces, respectively. The arrangement of landforms has an impact on runoff generation, with an average of 9% during peak flow, and an infiltration capacity, on average, 3% higher in the divergent-convergent surface. The greatest impact of the topography on stormwater management is considered based on the direct cost of the drainage system, which is 44% higher in the flat hillslope. Low impact development (LIDs) devices helped to improve ecosystem service provisions and even presented efficiency that almost achieved that of the predevelopment conditions in the evaluated scenarios. Seeking the urban patterns that best suit given environmental conditions is one of the approaches studied in this paper.


2020 ◽  
Author(s):  
Anaí Floriano Vasconcelos ◽  
Ademir Paceli Barbassa ◽  
Maria Fernanda Nóbrega dos Santos ◽  
Maryam Imani

Urban stormwater management is one of the key challenges concerning the sustainability in urban areas. Through several approaches, sustainable urban stormwater management (SUSM) is becoming widely adopted around the world and is proving its effectiveness in enhancing sustainability and quality of life in the cities. Nevertheless, these strategies are still not widespread in developing countries, such as Brazil, where more than 40% of municipalities reported pluvial flooding in the last five years. Inspired by international experiences, this paper presents the barriers to the widespread adoption of SUSM in Brazil, as a developing country case study with severe urban stormwater management problems. A thorough literature review has been conducted. Surveys relating to urban stormwater management have been completed by different stakeholder groups to investigate the factors involved in the problem, such as institutional issues, professional capacity, and resource availability. “Lack of design and maintenance standards”, “Lack of long-term planning”, “Lack of dissemination and knowledge”, “Lack of incentives”, and “Reluctance to change” have been recognized as the most challenging barriers by 80% of the respondents. Overcoming the common barriers is the prelude to effective SUSM solutions to increase urban stormwater sustainability in Brazil and in other developing countries with similar challenges.


Sign in / Sign up

Export Citation Format

Share Document