High Precision GPS Deformation Monitoring using Single Receiver Carrier Phase Data

Author(s):  
Noor Raziq ◽  
Philip Collier
2020 ◽  
Author(s):  
Jianghui Geng ◽  
Guangcai Li

High-precision navigation using low-cost handsets has profound potential for mass-market applications, which has been being boosted by the release of raw GNSS data from Google Android smart devices. However, integer ambiguity fixing for centimeter-level GNSS positioning is prevented by the unaligned chipset initial phase biases (IPBs) found within Android carrier-phase data. In this study, we thus investigate the temporal behaviors of those chipset IPBs using zero baselines where smart devices are linked to external survey-grade antennas, and find that the IPBs are generally stable over time as the mean standard deviation of single-epoch IPB estimates derived from continuous carrier-phase data is as low as 0.04 cycles for all satellites. Unfortunately, these chipset IPBs differ randomly among satellites and change unpredictably if carrier-phase signals are re-tracked, discouragingly suggesting that the chipset IPBs cannot be pre-calibrated or even calibrated on the fly. We therefore have to presumably correct for them in a post-processing manner with the goal of inspecting the potential of Android GNSS ambiguity resolution if hopefully the IPBs can be gone. For a vehicle-borne Nexus 9 tablet with respect to a survey-grade receiver located 100-2000 m away, we achieve the first ambiguity-fixed solution within 321 s and finally 51.6% of all epochs are resolved; the ambiguity-fixed epochs can achieve a positioning accuracy of 1.4, 2.2 and 3.6 cm for the east, north and up components, respectively, showing an improvement of 30%-80% compared to the ambiguity-float solutions. While all smart devices above are connected to external survey-grade antennas, we find that a Xiaomi 8 smartphone can be coupled effectively with a miniaturized portable patch antenna, and then achieve commensurate carrier-phase tracking and ambiguity-fixing performance to those of a commercial μ-blox receiver with its dedicated patch antenna. This is encouraging since a compact and inexpensive patch antenna paired with smart devices can promote the democratization of high-precision GNSS.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Yang Zhang ◽  
Lingling Xu ◽  
Yu Su ◽  
Wenfang Jing ◽  
Xiaochun Lu

2009 ◽  
Vol 62-64 ◽  
pp. 31-38
Author(s):  
J.O. Ehiorobo

In recent years, the need to monitor for Deformation in Engineering Structures such as Dams, Bridges and Tall buildings have become more necessary as a result of reported failures of many of these structures with catastrophic consequences globally. Global Positioning System (GPS) is highly automated and less labour intensive than other conventional techniques used in structural deformation monitoring. For most applications, such as National Geodetic Control Network, Urban Control Network and other Engineering Control Network, an accuracy in the cm level for most GPS work is quite adequate. For Structural deformation monitoring however, the required accuracy is in millimeters. In this paper, the use of Static Differential GPS method with multiple receivers for high precision measurement was investigated using the monitoring Stations at Ikpoba Dam as case study Scenerio. Four units of LEICA 300 Dual Frequency GPS receivers were deployed for code and carrier phase measurements with observation session of 1hr at a sampling rate of 15 sec. Baseline Processing and Least Squares Adjustment of observation was carried out in WGS 84 and NTM reference frames using the LEICA SKI-PRO Processing software and Move. Analysis of the results revealed that the number of outliers in the observation were <5% and the accuracy of horizontal and vertical coordinates were 4mm maximum for horizontal and 2mm maximum for vertical. The study revealed that in areas with favourable satellite constellation and appropriate reduction or elimination of multipath and other noise like errors, Static Differential GPS techniques with a combination of code and carrier phase measurement gives good results for structural deformation monitoring.


Author(s):  
Jacek Rapinski ◽  
Slawomir Cellmer ◽  
Joanna Janicka

This paper presents ZigBee module that is used for ranging in indoor positioning. The system is using the phase shift measurements to determine the distances between user and anchors. The nature of phase shift measurements is causing the results to be in the range of a single wave length. Thus, as in GNSS measurements, appears the problem with ambiguity resolution. In satellite positioning this issue is well described but in range-based ZigBee positioning this problem needs to be solved. The standard procedure to find the correct values of ambiguities is to search for a combination of observation equations with smallest RMS. The authors propose a different solution – the Modified Ambiguity Function Approach (MAFA). It is a method of GNSS carrier phase data processing. In this method, the integer nature of ambiguities is taken into account in the functional model of the adjustment.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 694 ◽  
Author(s):  
Ruicheng Zhang ◽  
Chengfa Gao ◽  
Shuguo Pan ◽  
Rui Shang

Real-time dynamic displacement and spectral response on the midspan of Jiangyin Bridge were calculated using Global Navigation Satellite System (GNSS) and a speedometer for the purpose of understanding the dynamic behavior and the temporal evolution of the bridge structure. Considering that the GNSS measurement noise is large and the velocity/acceleration sensors cannot measure the low-frequency displacement, the Variational Mode Decomposition (VMD) algorithm was used to extract the low-frequency displacement of GNSS. Then, the low-frequency displacement extracted from the GNSS time series and the high-frequency vibration calculated by speedometer were combined in this paper in order to obtain the high precision three-dimensional dynamic displacement of the bridge in real time. Simulation experiment and measured data show that the VMD algorithm could effectively resist the modal aliasing caused by noise and discontinuous signals compared with the commonly used Empirical Mode Decomposition (EMD) algorithm, which is guaranteed to get high-precision fusion data. Finally, the fused displacement results can identify high-frequency vibrations and low-frequency displacements of a mm level, which can be used to calculate the spectral characteristics of the bridge and provide reference to evaluate the dynamic and static loads, and the health status of the bridge in the full frequency domain and the full time domain.


2009 ◽  
Vol 46 (8) ◽  
pp. 627-636
Author(s):  
Ahmed A. El-Ghazouly ◽  
Mohamed Elhabiby ◽  
Naser El-Sheimy

In carrier-phase measurements, which are the most precise observations for Global Positioning System (GPS) relative positioning, multipath error is still a factor that interferes with achieving the desired accuracy. Various improvements in receiver and antenna technologies, as well as modeling strategies, have resulted in better ways of coping with this error source. However, errors caused by multipath can be as large as 5 cm, which is not an acceptable accuracy, especially in precise surveying applications like deformation monitoring. In this paper, a full assessment of different wavelets techniques that can be used in multipath mitigation is made to evaluate the optimum way of using wavelets to reduce or remove this type of error. Also, a new approach based on the wavelet detrending technique is introduced to remove carrier-phase multipath error in the measurement domain. To mitigate multipath, GPS double-difference observables are fed to an adaptive wavelet analysis procedure based on high- and low-pass filter decomposition with different levels of resolution. Consequently, the observable sequences are corrected; these corrected observables can then be used to reduce the ambiguity search volume during the initial float solution stage. Meanwhile, double-difference observations with multipath mitigation offer an efficient method for obtaining a better baseline solution.


Sign in / Sign up

Export Citation Format

Share Document