Influence of thermal treatments in microstructure and recrystallization peak energy of P/M Al-Mg-X alloys

Author(s):  
S. J. Buso ◽  
A. Almeida Filho ◽  
I. M. Espósito ◽  
J. R. Matos ◽  
W. A. Monteiro
Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
M.T. Jahn ◽  
J.C. Yang ◽  
C.M. Wan

4340 Ni-Cr-Mo alloy steel is widely used due to its good combination of strength and toughness. The mechanical property of 4340 steel can be improved by various thermal treatments. The influence of thermomechanical treatment (TMT) has been studied in a low carbon Ni-Cr-Mo steel having chemical composition closed to 4340 steel. TMT of 4340 steel is rarely examined up to now. In this study we obtain good improvement on the mechanical property of 4340 steel by TMT. The mechanism is explained in terms of TEM microstructures4340 (0.39C-1.81Ni-0.93Cr-0.26Mo) steel was austenitized at 950°C for 30 minutes. The TMTed specimen (T) was obtained by forging the specimen continuously as the temperature of the specimen was decreasing from 950°C to 600°C followed by oil quenching to room temperature. The thickness reduction ratio by forging is 40%. The conventional specimen (C) was obtained by quenching the specimen directly into room temperature oil after austenitized at 950°C for 30 minutes. All quenched specimens (T and C) were then tempered at 450, 500, 550, 600 or 650°C for four hours respectively.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


2018 ◽  
Author(s):  
Xiaoqing Chen ◽  
Hailong Li ◽  
Xueqiang Li ◽  
Yabo Wang ◽  
Kai Zhu

1993 ◽  
Vol 5 (2) ◽  
pp. 26-31
Author(s):  
Tsutomu OGAWA ◽  
Munehiro MONDO ◽  
Hiroshi KUDO ◽  
Moriaki WAKAKI

Author(s):  
Vittorio Berbenni ◽  
Chiara Milanese ◽  
Gianna Bruni ◽  
Pacifico Cofrancesco ◽  
Amedeo Marini ◽  
...  
Keyword(s):  

2018 ◽  
Vol 69 (10) ◽  
pp. 2819-2822
Author(s):  
Marcin Nabialek

This study presents the results of Mossbauer research and magnetic properties. The tests were carried out for amorphous Fe61Co10Y8Nb1B20 alloys produced in the form of strips with a thickness of approximately 35 mm. Mossbauer spectra were measured in transmission geometry for solid samples. Measurements were taken for samples in solidified state and after two heating processes. The first process was carried out at 700K and 60 minutes, the second at 720K and 210 minutes. For the samples prepared in this way, magnetization tests were performed as a function of the magnetic field strength. The values of saturation magnetization and the value of the coercive field were determined from these matrices. It was found that the performed thermal treatments had a negative effect on the value of saturation magnetization and change in the value of the coercive field.


2001 ◽  
Vol 711 ◽  
Author(s):  
Octavio Gomez-Martinez ◽  
Daniel H. Aguilar ◽  
Patricia Quintana ◽  
Juan J. Alvarado-Gil ◽  
Dalila Aldana ◽  
...  

ABSTRACTFourier Transform infrared spectroscopy has been employed to study the shells of two kind of mollusks, American oysters (Crassostrea virginica) and mussels (Ischadium recurvum). It is shown that it is possible to distinguish the different calcium carbonate lattice vibrations in each case, mussel shells present aragonite vibration frequencies, and the oyster shells present those corresponding to calcite. The superposition, shift and broadening of the infrared bands are discussed. Changes in the vibration modes due to successive thermal treatments are also reported.


Sign in / Sign up

Export Citation Format

Share Document