Experimental Studies on FRP-Concrete Composite Deck with FRP Perfobond Shear Connectors

Author(s):  
Weichen Xue ◽  
Chang Ge ◽  
Yuan Tan ◽  
Yongsheng Wang
2013 ◽  
Vol 569-570 ◽  
pp. 1241-1248 ◽  
Author(s):  
Jun Li ◽  
Hong Hao

Damage of shear connectors in slab-on-girder structures will result in shear slippage between slab and girder, which significantly reduces the load-carrying capacity of the bridge. This paper proposes a dynamic damage detection approach to identify the damage of shear connectors in slab-on-girder bridges with power spectral density transmissibility (PSDT). PSDT formulates the relationship between the auto-spectral density functions of two responses. Measured impact force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at the slab and girder sensor locations by experimental modal analysis. When measurement data from the undamaged structure are available, PSDT from the slab response to the girder response is derived with the obtained frequency response functions. PSDT matrices in the undamaged and damaged states are directly compared to identify the damage of shear connectors. When the measurement data from the undamaged structure are not available, PSDT matrices from measured response at a reference sensor response to those of the slab and girder in the damaged state can also be used to detect the damage of shear connectors. Experimental studies with a concrete slab supported by two steel girders are conducted to investigate the accuracy and efficiency of the proposed approach. Identification results demonstrated that damage of shear connectors can be identified accurately and efficiently with and without measurement data from the undamaged structure.


2014 ◽  
Vol 14 (02) ◽  
pp. 1350061 ◽  
Author(s):  
JUN LI ◽  
HONG HAO ◽  
YONG XIA ◽  
HONG-PING ZHU

Shear connectors are generally used to link the slab and girder together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girder, which significantly reduces the load-carrying capacity of bridges. A damage detection approach based on transmissibility in frequency domain is proposed in this paper to identify the damage of shear connectors in slab-on-girder bridge structures with or without reference data from the undamaged structure. The transmissibility, which is an inherent system characteristic, indicates the relationship between two sets of response vectors in frequency domain. Measured input force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at the slab and girder sensor locations by the experimental modal analysis. The transmissibility matrix that relates the slab response to the girder response is then derived. By comparing the transmissibility vectors in undamaged and damaged states, the damage level of shear connectors can be identified. When the measurement data from the undamaged structure are not available, a study with only the measured response data in the damaged state for the condition assessment of shear connectors is also conducted. Numerical and experimental studies on damage detection of shear connectors linking a concrete slab to two steel girders are conducted to validate the accuracy and efficiency of the proposed approach. The results demonstrate that the proposed method can be used to identify shear connector damages accurately and efficiently. The proposed method is also applied to the condition evaluation of shear connectors in a real composite bridge with in-field testing data.


2019 ◽  
Vol 12 (5) ◽  
pp. 1157-1182 ◽  
Author(s):  
W. C. S. BARBOSA ◽  
L. M. BEZERRA ◽  
L. CHATER ◽  
O. R. O. CAVALCANTE

Abstract The composite structures have great advantages in terms of structural and constructive aspects, with the shear connectors being decisive for obtaining the interaction between the structural elements and for the distribution of the stresses in the structure, taking advantage of the potentiality of each constituent material of the composite structure (steel and concrete). This work, through experimental studies, presents the development of a shear connector (Truss connector) proposed for use in a concrete-steel composite beam. The proposed connector is easy to implement and can serve as a viable alternative to the use of stud or U connectors. It was idealized a connector geometry that would provide low production cost, ease of execution, higher values of resistant load, efficiency as regards the relative sliding resistance between the metal profile and the concrete slab, as well as the efficiency regarding the resistance to the spacing of the slabs in relation to the metal profile (uplift). In order to evaluate the behavior of Truss connectors, 6 experimental models were constructed for push-out tests, 3 with 12.5 mm diameter Truss connectors and 3 with 19.0 mm diameter stud bolt connectors. The behavior of the models was investigated with respect to the loads of rupture, the transversal displacements between the concrete slabs and the relative vertical slide between the reinforced concrete slabs and the metallic profiles of the models. The results of the experimental analyzes provided an overview of the operation of the Truss and stud bolt connectors, with significant results that showed advantages of the Truss connector in relation to the stud connector considering the parameters analyzed in this work.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


Author(s):  
Ina Grau ◽  
Jörg Doll

Abstract. Employing one correlational and two experimental studies, this paper examines the influence of attachment styles (secure, anxious, avoidant) on a person’s experience of equity in intimate relationships. While one experimental study employed a priming technique to stimulate the different attachment styles, the other involved vignettes describing fictitious characters with typical attachment styles. As the specific hypotheses about the single equity components have been developed on the basis of the attachment theory, the equity ratio itself and the four equity components (own outcome, own input, partner’s outcome, partner’s input) are analyzed as dependent variables. While partners with a secure attachment style tend to describe their relationship as equitable (i.e., they give and take extensively), partners who feel anxious about their relationship generally see themselves as being in an inequitable, disadvantaged position (i.e., they receive little from their partner). The hypothesis that avoidant partners would feel advantaged as they were less committed was only supported by the correlational study. Against expectations, the results of both experiments indicate that avoidant partners generally see themselves (or see avoidant vignettes) as being treated equitably, but that there is less emotional exchange than is the case with secure partners. Avoidant partners give and take less than secure ones.


Sign in / Sign up

Export Citation Format

Share Document