PowerVisor: A Toolset for Visualizing Energy Consumption and Heat Dissipation Processes in Modern Processor Architectures

Author(s):  
Alexey Baranov ◽  
Peter Panfilov ◽  
Dmitry Ponomarev
Author(s):  
Babak Fakhim ◽  
Srinarayana Nagarathinam ◽  
Simon Wong ◽  
Masud Behnia ◽  
Steve Armfield

Aggregation of small networking hardware has led to an ever increasing power density in data centres. The energy consumption of IT systems is continuing to rise substantially owing to the demands of electronic information and storage requirements. Energy consumption of data centres can be severely and unnecessarily high due to inadequate localised cooling and densely packed rack layouts. However, as heat dissipation in data centres rises by orders of magnitude, inefficiencies such as air recirculation causing hot spots, leading to flow short-circuiting will have a significant impact on the thermal manageability and energy efficiency of the cooling infrastructure. Therefore, the thermal management of high-powered electronic components is a significant challenge for cooling of data centres. In this project, an operational data centre has been studied. Field measurements of temperature have been performed. Numerical analysis of flow and temperature fields is conducted in order to evaluate the thermal behaviour of the data centre. A number of undesirable hot spots have been identified. To rectify the problem, a few practical design solutions to improve the cooling effectiveness have been proposed and examined to ensure a reduced air-conditioning power requirement. Therefore, a better understanding of the cooling issues and the respective proposed solutions can lead to an improved design for future data centres.


2018 ◽  
Vol 162 ◽  
pp. 05026
Author(s):  
Naseer Alharbawee

The present study aims to make a comparison of the thermal behaviour for various exterior Packaging materials (Local or Imported) or a new proposed (a phase change material), which are used in covering the facades of buildings in Kirkuk city/Iraq. And thus know how much those materials effect on energy conservation (rationalization in energy consumption). In this study the focus was on making comparison of heat dissipation and power consumption (Save energy) when using the conventional and proposed materials and which of them has the greatest ability to withstand various environmental conditions. The study was carried out (from the beginning of January 2017 until the end of February, 2017) which this period represents the cold months in the year. (Where temperatures ranged from−2 to 15 °C) which within those months all facilities, buildings need to be heated. The thermal conductivity of various classical covering materials samples was measured and compared with the values of the other certified project sources. It was found through analysis of the results that the use of proposed material which is a phase change material (Paraffin Wax) exceeds in terms of energy reduction than other classical covering materials. It was also shows that the use of classical and proposed covering materials reduces heat loss through the exterior walls (reducing demanded heating load in the comfort zone), thus minimizing the consumption of (save) expended energy within the comfort.


2020 ◽  
Author(s):  
Shingo Sotoma ◽  
Chongxia Zhong ◽  
James Chen Yong Kah ◽  
Hayato Yamashita ◽  
Taras Plakhotnik ◽  
...  

AbstractUnderstanding heat dissipation processes at nanoscale during cellular thermogenesis is essential to clarify the relationships between the heat and biological processes in cells and organisms. A key parameter determining the heat flux inside a cell is the local thermal conductivity, a factor poorly investigated both experimentally and theoretically. Here, using a nanoheater/nanothermometer hybrid based on a polydopamine shell encapsulating a fluorescent diamond nanocrystal, we measured the intracellular thermal conductivity of HeLa cell with a spatial resolution of about 200 nm. Its mean value of 0.11 Wm-1K-1 determined for the first time is significantly smaller than that of water. Bayesian analysis of the data strongly supports the existence of variation of the intracellular thermal conductivity of about 40%. These results present a major milestone towards understanding the intracellular heat transfer phenomena at nanoscale.


1998 ◽  
Vol 25 (5) ◽  
pp. 581 ◽  
Author(s):  
Mark J. Hovenden ◽  
Charles R. Warren

The allocation of absorbed photon energy to thermal energy dissipation and photosynthetic electron transport was investigated as a function of photosynthetic photon flux density (PPFD) and temperature in two species of subalpine eucalypt, Eucalyptus nitens (Deane et Maiden) Maiden and E. pauciflora Sieb. ex Spreng. The proportion of absorbed light utilised in photosynthetic electron transport decreased with increasing PPFD, and the decrease was more pronounced the lower the temperature. The proportion diverted into dissipation processes increased with increasing PPFD to a maximum where it reached a plateau. This maximum increased with decreasing temperature. Exposure to a succession of cold (4˚C) nights increased the photochemical quantum yield of photosystem II and decreased the allocation of excitation energy to thermal dissipation processes in conditions of excess light, particularly at low temperatures. Consequently, the photosynthetic electron transport rate (ETR) was higher and heat dissipation rate (HDR) was lower in hardened plants than in non-hardened plants at low temperatures. At 20˚C, ETR was generally higher than HDR in all plants, but as the temperature decreased, HDR became the dominant process. The PPFD at which HDR exceeded ETR decreased with decreasing temperature, and at low temperatures was always lower in non-hardened plants than hardened plants, although quite similar between species.


2020 ◽  
Author(s):  
Chi Zhang ◽  
Haidong Zhou ◽  
Bowen Xiao ◽  
Ningning Yang ◽  
Shixing Yuan ◽  
...  

2016 ◽  
Vol 822 ◽  
pp. 243-251
Author(s):  
Vladimir Mardarescu ◽  
Nicolae Ispas ◽  
Mircea Nastasoiu

Small diesel engines with direct injection air cooled a big problem is heat dissipation. Based on bench made ​​with a 295 cc diesel engine with direct injection, air cooled, I set the heat flows through the cylinder head, piston and cylinder. These data are needed to study the possibility of operating at maximum power, knowing that mechanical stresses of thermal origin are the most dangerous. The data obtained in this work will be used in the analysis of temperature and stress fields.


2019 ◽  
Vol 117 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Yadong Xu ◽  
Bohan Sun ◽  
Yun Ling ◽  
Qihui Fei ◽  
Zanyu Chen ◽  
...  

In addition to mechanical compliance, achieving the full potential of on-skin electronics needs the introduction of other features. For example, substantial progress has been achieved in creating biodegradable, self-healing, or breathable, on-skin electronics. However, the research of making on-skin electronics with passive-cooling capabilities, which can reduce energy consumption and improve user comfort, is still rare. Herein, we report the development of multifunctional on-skin electronics, which can passively cool human bodies without needing any energy consumption. This property is inherited from multiscale porous polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) supporting substrates. The multiscale pores of SEBS substrates, with characteristic sizes ranging from around 0.2 to 7 µm, can effectively backscatter sunlight to minimize heat absorption but are too small to reflect human-body midinfrared radiation to retain heat dissipation, thereby delivering around 6 °C cooling effects under a solar intensity of 840 W⋅m−2. Other desired properties, rooted in multiscale porous SEBS substrates, include high breathability and outstanding waterproofing. The proof-of-concept bioelectronic devices include electrophysiological sensors, temperature sensors, hydration sensors, pressure sensors, and electrical stimulators, which are made via spray printing of silver nanowires on multiscale porous SEBS substrates. The devices show comparable electrical performances with conventional, rigid, nonporous ones. Also, their applications in cuffless blood pressure measurement, interactive virtual reality, and human–machine interface are demonstrated. Notably, the enabled on-skin devices are dissolvable in several organic solvents and can be recycled to reduce electronic waste and manufacturing cost. Such on-skin electronics can serve as the basis for future multifunctional smart textiles with passive-cooling functionalities.


2019 ◽  
pp. 01-15
Author(s):  
Jani DB

The continuous progressive demand of building construction raises many issues regarding supply of high grade electricity. It creates many environmental issues for its production like as global warming. So, the passive cooling buildings were welcomed to respond variable climate in order to reduce energy supply for thermal comfort as well as health of building users. The aim of designing a passive building is to take best advantage of the regional outdoor ambient conditions. Passive cooling refers to a building architectural approach that mainly goal on heat gain control and heat dissipation in a architectural structure in order to ameliorate the indoor thermal comfort with low or nil energy consumption. Passive cooling systems use non-mechanical methods to sustain a comfortable indoor temperature and are a main aim in extenuating the impact of buildings on the regional environment. The energy consumption in buildings is very much with the anticipation to further increase because of improving standards of leaving and the increase of industrialization. The use of HVAC in building has exponentially rises over the past few decades and quite enough to contribute in the enormous use of high grade electrical energy consumption. This paper reviews various passive cooling techniques used in the green building and their role in providing thermal comfort and its significance in energy conservation with the help of architectural interventions.


The advent of social media, smart mobile devices and the Internet of Things (IoT) has led to the generation of unstructured data at an astronomical rate, thereby creating an ever-increasing demand for object storage. These object storage systems consume a lot of energy, resulting in increased heat dissipation, greater cooling requirements (which in turn consumes more energy), higher operational costs, and excessive carbon footprint. Although there has been some progress in building energy-efficient disk systems, works on energy-efficient object storage systems are still in the nascent stage. In this paper, we propose SEA: An SSD Staged Energy Efficient Object Storage System Architecture, wherein we introduce a staging layer comprising Solid State Drives (SSDs) on top of the existing object storage system consisting primarily of Hard Disk Drives (HDDs). SSDs not only consume lesser power as compared to HDDs but are also much faster. Leveraging SSDs for staging reduces the number and frequency of requests hitting the object storage system underneath, allowing us to selectively spin down a substantial number of disks without violating any Service Level Agreements driven by Quality of Service requirements while reducing the total disk energy consumption. Given the high-performance characteristics of SSDs, this SSD staging layer significantly enhances the performance of the object storage system as a whole. As a case study, we have modeled this architecture for OpenStack Swift. Our simulation results using a Dropbox-like workload show that, even after factoring in the additional energy consumed by the SSD staging layer, our model was able to reduce the total disk energy consumption by up to 15.235 % and improve performance by up to 29.06 %.


Sign in / Sign up

Export Citation Format

Share Document