Neurotransmitter Receptors in Human Brain Diseases

Author(s):  
A. Probst ◽  
G. Mengod ◽  
J. M. Palacios
2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2017 ◽  
Vol 26 (4) ◽  
pp. 577-591 ◽  
Author(s):  
BENJAMIN CAPPS

Abstract:Suppose that a colleague proposed a fantastic experiment: to introduce human stem cells into a neonatal mouse so that its entire brain developed into “human-like” neuronal structures. The colleague claimed it would still be a mouse, and that its chimeric brain would be nothing like a “human” one. It would not, as a result, have a moral status beyond its nonhuman animal origins. Thus, the “human neuron mouse” would allow scientists to tinker with human-like neurology in ways that would be precluded if it were a human being, and that would promise to lead to substantial understanding of the destructive and incurable brain diseases that befall humanity. The colleague does admit, however, that for reasons of comparative fidelity, experiments in human patients would be scientifically preferable, although in this case, neither ethically justified nor legally permitted. For that reason, it might be desirable to create a human brain in a nonhuman primate, where it would be more likely that significant human-like neuronal development would occur, but still could not become a person. This article explores the significance of a “human neuron chimpanzee,” and suggests that contradictions in the design of the experiment make it unethical to proceed in either murine or primate models.


Author(s):  
Jack M. Gorman

Some scientists now argue that humans are really not superior to other species, including our nearest genetic neighbors, chimpanzees and bonobos. Indeed, those animals seem capable of many things previously thought to be uniquely human, including a sense of the future, empathy, depression, and theory of mind. However, it is clear that humans alone produce speech, dominate the globe, and have several brain diseases like schizophrenia. There are three possible sources within the brain for these differences in brain function: in the structure of the brain, in genes coding for proteins in the brain, and in the level of expression of genes in the brain. There is evidence that all three are the case, giving us a place to look for the intersection of the human mind and brain: the expression of genes within neurons of the prefrontal cortex.


2017 ◽  
Vol 7 (2) ◽  
pp. 82
Author(s):  
Eddie John Paul Fisher ◽  
Yorkys Santana Gonzalez ◽  
Eddie Fisher

Brain science and cognitive psychology are in high demand amongst professions such as social psychology, education and science. Advancing the capabilities of the human brain in terms of power to benefit society and improve people’s lives has become a topic of increasing value and interest to social psychologists. This research, limited to a literature review and a number of face to face interviews with psychology students to add some contemporary perspectives, investigated how increases in brain power could be achieved and what the potential benefits could be to social psychologists. Results suggest that short term brain power increases can be achieved through the application of low risk neurocognitive approaches such as brain training and by consuming natural brain foods and nutritional brain drugs. Infra-red laser stimulation of certain parts of the human brain not only increases cognitive brain power permanently but has the potential to reduce or eliminate brain diseases such as dementia and autism. Caution should be exercised to maintain the humanity element of what makes people human prior to engaging in long term brain power increase activities. 


2016 ◽  
Vol 8 ◽  
pp. JCNSD.S32204 ◽  
Author(s):  
He Liu ◽  
Ni Song

Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.


2010 ◽  
Vol 28 (8) ◽  
pp. 705-705
Author(s):  
A.G. Diaconeasa ◽  
L. Spiru ◽  
I. Turcu

2002 ◽  
Vol 22 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Eric V. Shusta ◽  
Ruben J. Boado ◽  
Gary W. Mathern ◽  
William M. Pardridge

The microvasculature of the human brain plays an important role in the development and maintenance of the central nervous system and in the pathogenesis of brain diseases, and is the site of differential gene expression within the brain. However, human brain microvascular-specific genes may not be detected in whole-brain gene microarray because the volume of the brain microvascular endothelium is relatively small (0.1%) compared with the whole brain. Therefore, the differential gene expression within the human brain microvasculature was evaluated using suppression subtractive hybridization with RNA isolated from human brain microvessels. Gene identification was restricted to the first 71 clones that were differentially expressed at the brain microvasculature. Twenty of these were genes encoding proteins with known function that were involved in angiogenesis, neurogenesis, molecular transport, and maintenance of endothelial tight junctions or the cytoskeleton. Eighteen genes coding for proteins of an unknown function were identified, including five genes containing satellite DNA sequences. The results provide the initial outline of the genomics of the human brain microvasculature, and have implications for the identification of both targets for brain-specific drug transport and changes in microvascular gene expression in brain diseases.


Sign in / Sign up

Export Citation Format

Share Document