[P2.54]: Human evolution, human brain diseases

2010 ◽  
Vol 28 (8) ◽  
pp. 705-705
Author(s):  
A.G. Diaconeasa ◽  
L. Spiru ◽  
I. Turcu
2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2017 ◽  
Vol 26 (4) ◽  
pp. 577-591 ◽  
Author(s):  
BENJAMIN CAPPS

Abstract:Suppose that a colleague proposed a fantastic experiment: to introduce human stem cells into a neonatal mouse so that its entire brain developed into “human-like” neuronal structures. The colleague claimed it would still be a mouse, and that its chimeric brain would be nothing like a “human” one. It would not, as a result, have a moral status beyond its nonhuman animal origins. Thus, the “human neuron mouse” would allow scientists to tinker with human-like neurology in ways that would be precluded if it were a human being, and that would promise to lead to substantial understanding of the destructive and incurable brain diseases that befall humanity. The colleague does admit, however, that for reasons of comparative fidelity, experiments in human patients would be scientifically preferable, although in this case, neither ethically justified nor legally permitted. For that reason, it might be desirable to create a human brain in a nonhuman primate, where it would be more likely that significant human-like neuronal development would occur, but still could not become a person. This article explores the significance of a “human neuron chimpanzee,” and suggests that contradictions in the design of the experiment make it unethical to proceed in either murine or primate models.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 760 ◽  
Author(s):  
Alysson R. Muotri

Human brain organoids, generated from pluripotent stem cells, have emerged as a promising technique for modeling early stages of human neurodevelopment in controlled laboratory conditions. Although the applications for disease modeling in a dish have become routine, the use of these brain organoids as evolutionary tools is only now getting momentum. Here, we will review the current state of the art on the use of brain organoids from different species and the molecular and cellular insights generated from these studies. Besides, we will discuss how this model might be beneficial for human health and the limitations and future perspectives of this technology.


2019 ◽  
pp. 44-71
Author(s):  
Riane Eisler

This chapter introduces a new perspective on the role of love in human evolution and human development. The bonds of love, whether between parent and child, lovers, or close friends, may all have a common biological root, activating neurochemicals that make us feel good. Like other human capacities, such as consciousness, learning, and creativity, love has a long and fascinating evolutionary history. Indeed, the evolution of love appears to be integral to the development of our human brain and hence to much that distinguishes us from other species. Moreover, love plays a vital, though still largely unrecognized, role in human development, with evidence accumulating about the negative effects of love deprivation as well as the benefits of love. But whether or not our needs for meaning and love are met, and whether or not our capacities for creativity and love are expressed, are largely determined by the interaction of biology and culture—specifically, the degree to which a culture or subculture orients to the partnership or domination end of the continuum.


Author(s):  
Jack M. Gorman

Some scientists now argue that humans are really not superior to other species, including our nearest genetic neighbors, chimpanzees and bonobos. Indeed, those animals seem capable of many things previously thought to be uniquely human, including a sense of the future, empathy, depression, and theory of mind. However, it is clear that humans alone produce speech, dominate the globe, and have several brain diseases like schizophrenia. There are three possible sources within the brain for these differences in brain function: in the structure of the brain, in genes coding for proteins in the brain, and in the level of expression of genes in the brain. There is evidence that all three are the case, giving us a place to look for the intersection of the human mind and brain: the expression of genes within neurons of the prefrontal cortex.


2017 ◽  
Vol 7 (2) ◽  
pp. 82
Author(s):  
Eddie John Paul Fisher ◽  
Yorkys Santana Gonzalez ◽  
Eddie Fisher

Brain science and cognitive psychology are in high demand amongst professions such as social psychology, education and science. Advancing the capabilities of the human brain in terms of power to benefit society and improve people’s lives has become a topic of increasing value and interest to social psychologists. This research, limited to a literature review and a number of face to face interviews with psychology students to add some contemporary perspectives, investigated how increases in brain power could be achieved and what the potential benefits could be to social psychologists. Results suggest that short term brain power increases can be achieved through the application of low risk neurocognitive approaches such as brain training and by consuming natural brain foods and nutritional brain drugs. Infra-red laser stimulation of certain parts of the human brain not only increases cognitive brain power permanently but has the potential to reduce or eliminate brain diseases such as dementia and autism. Caution should be exercised to maintain the humanity element of what makes people human prior to engaging in long term brain power increase activities. 


2016 ◽  
Vol 8 ◽  
pp. JCNSD.S32204 ◽  
Author(s):  
He Liu ◽  
Ni Song

Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.


Sign in / Sign up

Export Citation Format

Share Document