Bulk and Surface Properties of Quasicrystalline Materials and Their Potential Applications

Author(s):  
Jean-Marie Dubois
Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2161
Author(s):  
Cristina Della Pina ◽  
Maria Antonietta De Gregorio ◽  
Pierluisa Dellavedova ◽  
Ermelinda Falletta

Water remediation from hydrocarbons is crucial to reduce health risks. Numerous costly and, sometimes, sophisticated methods were proposed over the years. Herein, an innovative green procedure for porous polyanilines preparation is reported. Polyaniline (PANI) was synthesized by three different approaches ranging from traditional to more eco-friendly ones. Thermal, optical and morphological features of the resulting materials were investigated along with their surface properties. Finally, PANIs were tested as sorbents for hydrocarbons removal from waterbodies. Although an overall fast and high sorption efficiency is always observed, the effective hydrocarbons abatement performed by ‘green’ PANIs is particularly welcome in the context of environmental protection. Moreover, the sorption efficiency retention after five-run recycling tests suggests potential applications in wastewater remediation.


2020 ◽  
Vol 8 (42) ◽  
pp. 22302-22314
Author(s):  
Dae-Wook Kim ◽  
Nobuyuki Zettsu ◽  
Hiromasa Shiiba ◽  
Gabriel Sánchez-Santolino ◽  
Ryo Ishikawa ◽  
...  

This work provides a new avenue for designing the surface properties of electrode materials with superior electrochemical performance for lithium ion batteries by introducing sulfide anions to modify the Lewis base characteristics of LiNi0.5Mn1.5O4.


2006 ◽  
Vol 21 (5) ◽  
pp. 1312-1316 ◽  
Author(s):  
Brittany L. Oliva ◽  
Anindya Pradhan ◽  
Daniela Caruntu ◽  
Charles J. O'Connor ◽  
Matthew A. Tarr

TiO2 nanoparticles with embedded magnetite were suspended in aqueous HAuCl4 and ultraviolet irradiated to photodeposit gold on the surface. The degree of gold coating and the wavelength of absorbance could be controlled by adjusting [HAuCl4]. Absorbance maxima were between 540-590 nm. Particles exhibited superparamagnetic properties (blocking temperature ∼170 K) whether or not coated with gold. These particles have potential applications as drug delivery agents, magnetic imaging contrast agents, and magnetically separatable photocatalysts with unique surface properties.


2020 ◽  
Vol 978 ◽  
pp. 191-201
Author(s):  
Abhishek Sharma ◽  
Jinu Paul

In recent years, increasing weld strength along with improved surface properties of the joint during friction stir welding (FSW) has gained noteworthy attention due to increasing applications concerning higher wear resistance and strength related factors. Accordingly, the exploration endures for new materials and ways which will probably increase weld strength along with imparting various improved surface properties to the weld. In spite of several modifications on FSW, its in-situ composite fabrication potential remains quite unfamiliar. In this study, we make available an up to date review of recent in-situ fabricated composites during FSW by using various reinforcements. In particular, the effect of various reinforcements and methodology on the weld strength and surface hardness is reported systematically. Moreover, the strengthening mechanisms accountable for the improvement in weld propeties have been reviewed, and the new potential applications of this new welding strategy are envisaged.


Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.


2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


Sign in / Sign up

Export Citation Format

Share Document