From Protein Domains to Drug Candidates — Natural Products as Guiding Principles in Compound Library Design and Synthesis

Author(s):  
R. Breinbauer ◽  
I. R. Vetter ◽  
H. Waldmann
2010 ◽  
Vol 391 (5) ◽  
pp. 491-497 ◽  
Author(s):  
Wolfram Wilk ◽  
Tobias J. Zimmermann ◽  
Markus Kaiser ◽  
Herbert Waldmann

Abstract Biology-oriented synthesis (BIOS) represents an alternative approach for the generation of compound collections for biological applications. In BIOS, biologically relevant and prevalidated scaffold structures, such as core structures of natural products or known drugs, are employed as scaffolds for the generation of compound collections with focused diversity. In this review, we discuss the underlying concept of the BIOS approach, and its practical implementation in library design and synthesis. To highlight its relevance for chemical biology applications, we finally present examples in which compound collections generated under the BIOS principle have been used to elucidate biological questions.


2018 ◽  
Vol 25 (20) ◽  
pp. 2304-2328 ◽  
Author(s):  
Lishu Wang ◽  
Jungfeng Wang ◽  
Juan Liu ◽  
Yonghong Liu

Due to the importance of nature as a source of new drug candidates, the purpose of this article is to emphasize the marine natural products, which exhibit antitubercular activity, published between January 2000 and May 2016, with 138 quotations to 250 compounds obtained from marine resources. These metabolites are organized by chemical constitution and named as simple alkyl lipids derivatives, aromatics derivatives, peptides, alkaloids, terpenoids, steroids, macrolides, and polycyclic polyketides.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.


2021 ◽  
Vol 28 ◽  
Author(s):  
Jiahua Cui ◽  
Jiajun Qian ◽  
Larry Ming-Cheung Chow ◽  
Jinping Jia

Background: The proposed central role of cancer stem cells (CSCs) in tumor development has been extended to explain the diverse oncologic phenomena such as multidrug resistance, metastasis and tumor recurrence in clinics. Due to the enhanced expression of ATP-binding cassette transporters and anti-apoptotic factors, stagnation on G0 phase and the strong ability of self-renewal, the CSCs were highly resistant to clinical anticancer drugs. Therefore, the discovery of new drug candidates that could effectively eradicate cancer stem cells afforded promising outcomes in cancer therapy. Introduction: Natural products and their synthetic analogues are a rich source of biologically active compounds and several of them have already been recognized as potent CSCs killers. We aim to provide a collection of recently identified natural products that suppressed the survival of the small invasive CSC populations and combated the drug resistance of these cells in chemotherapy. Results and Conclusion: These anti-CSCs natural products included flavonoids, stilbenes, quinones, terpenoids, polyketide antibiotics, steroids and alkaloids. In the present review, we highlighted the therapeutic potential of natural products and their derivatives against the proliferation and drug resistance of CSCs, their working mechanisms and related structure-activity relationships. Meanwhile, in this survey, several natural products with diverse cellular targets such as the naphthoquinone shikonin and the stilbene resveratrol were characterized as promising lead compounds for future development.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1518 ◽  
Author(s):  
Ana L. Chávez-Hernández ◽  
Norberto Sánchez-Cruz ◽  
José L. Medina-Franco

Natural products and semi-synthetic compounds continue to be a significant source of drug candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is causing the current pandemic. Besides being attractive sources of bioactive compounds for further development or optimization, natural products are excellent substrates of unique substructures for fragment-based drug discovery. To this end, fragment libraries should be incorporated into automated drug design pipelines. However, public fragment libraries based on extensive collections of natural products are still limited. Herein, we report the generation and analysis of a fragment library of natural products derived from a database with more than 400,000 compounds. We also report fragment libraries of a large food chemical database and other compound datasets of interest in drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment libraries were characterized in terms of content and diversity.


Sign in / Sign up

Export Citation Format

Share Document