Machine Learning in Engineering Design: Learning Generalized Design Prototypes from Examples

Author(s):  
M. L. Maher
2021 ◽  
Vol 2083 (3) ◽  
pp. 032058
Author(s):  
Ting Liu

Abstract With the development of water conservancy informatization, the research on water information system integration is born, which is the need of water conservancy informatization construction at present and also an urgent problem to be solved. Based on the machine learning algorithm, combined with the actual needs of water conservancy business field, the overall framework of computer system integration for water conservancy engineering design is put forward. The overall framework includes: resource layer, comprehensive integration layer and user layer, which exchange data with configuration monitoring software by means of communication. The analytic hierarchy process in machine learning algorithm is used to construct the risk prediction index system, and the risk prediction index and initial prediction results are taken as the input and output of extreme learning machine algorithm in machine learning algorithm. The simulation results show that the prediction accuracy of this method is 94.88%, which can accurately predict the risks existing in hydraulic engineering design computer system and improve the system security.


Author(s):  
Xianping Du ◽  
Onur Bilgen ◽  
Hongyi Xu

Abstract Machine learning for classification has been used widely in engineering design, for example, feasible domain recognition and hidden pattern discovery. Training an accurate machine learning model requires a large dataset; however, high computational or experimental costs are major issues in obtaining a large dataset for real-world problems. One possible solution is to generate a large pseudo dataset with surrogate models, which is established with a smaller set of real training data. However, it is not well understood whether the pseudo dataset can benefit the classification model by providing more information or deteriorates the machine learning performance due to the prediction errors and uncertainties introduced by the surrogate model. This paper presents a preliminary investigation towards this research question. A classification-and-regressiontree model is employed to recognize the design subspaces to support design decision-making. It is implemented on the geometric design of a vehicle energy-absorbing structure based on finite element simulations. Based on a small set of real-world data obtained by simulations, a surrogate model based on Gaussian process regression is employed to generate pseudo datasets for training. The results showed that the tree-based method could help recognize feasible design domains efficiently. Furthermore, the additional information provided by the surrogate model enhances the accuracy of classification. One important conclusion is that the accuracy of the surrogate model determines the quality of the pseudo dataset and hence, the improvements in the machine learning model.


Author(s):  
Yoram Reich

Since the inception of research on machine learning (ML), these techniques have been associated with the task of automated knowledge generation or knowledge reorganization. This association still prevails, as seen in this issue. When the use of ML programs began to attract researchers in engineering design, different existing tools were used to test their utility and gradually, variations of these tools and methods have sprung up. In many cases, the use of these tools was based on availability and not necessarily applicability. When we began working on ML in design, we attempted to follow a different path (Reich, 1991a; Reich & Fenves, 1992) that led to the design of Bridger (Reich & Fenves, 1995), a system for learning bridge synthesis knowledge. Subsequent experiences and further reflection led us to conclude that the process of using ML in design requires careful and systematic treatment for identifying appropriate ML programs for executing the learning tasks we wish to perform (Reich, 1991b, 1993a). Another observation was that the task of creating or reorganizing knowledge for real design tasks is outside the scope of present ML programs. Establishing the practical importance of ML techniques had to start by addressing engineering problems that could benefit from present ML programs.


IEEE Expert ◽  
1992 ◽  
Vol 7 (3) ◽  
pp. 52-59 ◽  
Author(s):  
S. Yerramareddy ◽  
D.K. Tcheng ◽  
S.C.-Y. Lu ◽  
D.N. Assanis

2020 ◽  
Author(s):  
Lourdes Gazca ◽  
Enrique Palou ◽  
Aurelio López-Malo ◽  
Juan Manuel Garibay

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Conner Sharpe ◽  
Tyler Wiest ◽  
Pingfeng Wang ◽  
Carolyn Conner Seepersad

Abstract Supervised machine learning techniques have proven to be effective tools for engineering design exploration and optimization applications, in which they are especially useful for mapping promising or feasible regions of the design space. The design space mappings can be used to inform early-stage design exploration, provide reliability assessments, and aid convergence in multiobjective or multilevel problems that require collaborative design teams. However, the accuracy of the mappings can vary based on problem factors such as the number of design variables, presence of discrete variables, multimodality of the underlying response function, and amount of training data available. Additionally, there are several useful machine learning algorithms available, and each has its own set of algorithmic hyperparameters that significantly affect accuracy and computational expense. This work elucidates the use of machine learning for engineering design exploration and optimization problems by investigating the performance of popular classification algorithms on a variety of example engineering optimization problems. The results are synthesized into a set of observations to provide engineers with intuition for applying these techniques to their own problems in the future, as well as recommendations based on problem type to aid engineers in algorithm selection and utilization.


Author(s):  
Yi Ren ◽  
Panos Y. Papalambros

Active learning refers to the mechanism of querying users to accomplish a classification task in machine learning or a conjoint analysis in econometrics with minimum cost. Classification and conjoint analysis have been introduced to design research to automate design feasibility checking and to construct marketing demand models, respectively. In this paper, we review active learning algorithms from computer and marketing science, and establish the mathematical commonality between the two approaches. We compare empirically the performance of active learning and static D-optimal design on simulated classification and conjoint analysis test problems with labelling noise. Results show that active learning outperforms D-optimal design when query size is large or noise is small.


Sign in / Sign up

Export Citation Format

Share Document