Impacts of seawater desalination plants on the marine environment of the Gulf

Author(s):  
Sabine Lattemann ◽  
Thomas Höpner
Author(s):  
OO Sinitsyna ◽  
VV Turbinsky ◽  
TM Ryashentseva ◽  
EP Lavrik

Background. Uneven distribution of fresh water sources on the land surface encourages a search for effective techniques of potable water preparation by desalination of seawater. Hygienic issues of such desalination methods as distillation, reverse osmosis, electrodialysis, and ion exchange have been investigated by now and appropriate limitations, requirements, and additional measures to ensure safety of desalinated drinking water have been established. Objective. To summarize and systematize the results of studying characteristics of various methods of seawater desalination for its further use for drinking and household purposes. Materials and methods. We conducted a systematic review of studies published in Russian and in English, found in the PubMed and Web of Science databases, and selected 40 literary sources containing an empirical assessment of effectiveness of seawater desalination and preparation of drinking water. We also scrutinized regulatory documents and guidelines of domestic sanitary legislation. The research results were systematized by the main desalination methods. Results and discussion. We established that the use of seawater for the preparation of fresh water for drinking and household purposes is becoming increasingly widespread around the world. Drinking water obtained from seawater, in all cases, requires additional treatment and measures to optimize its mineral composition and protect against microorganisms. Conclusion. The main challenges of ensuring sanitary and epidemiological wellbeing of the population when using desalinated seawater for drinking and household purposes include selection of a source, arrangement of sites of water intake properly protected from natural and man-made pollution, substantiation of techniques and modes of preliminary preparation of source seawater adequate to its composition, basic desalination, ensuring safety of products of destruction and migration of toxic substances from reagents and materials of desalination plants, additional conditioning with the necessary elements and disinfection of the prepared water, as well as environmental protection from desalination waste.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 781
Author(s):  
Federico Leon ◽  
Alejandro Ramos ◽  
S. Ovidio Perez-Baez

This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1233 ◽  
Author(s):  
Victoriano Martínez-Alvarez ◽  
Jose F. Maestre-Valero ◽  
Manuel J. González-Ortega ◽  
Belén Gallego-Elvira ◽  
Bernardo Martin-Gorriz

The increasing shortage of water for crop irrigation in arid and semiarid regions is encouraging the use of non-conventional resources. In the last decade, seawater desalination has consolidated its position as an alternative source to increase the supply for agricultural irrigation in Spain and Israel, where the farmers’ acceptance is progressively rising, despite the supply price being much higher than that of other conventional water sources. This article describes the current situation of desalinated seawater production and supply to agriculture in the southeast of Spain, and analyzes key questions such as its role in regional water planning, the infrastructure needed for conveyance and distribution, the energy requirements, the production and distribution costs, and the final price to farmers. The study is based on descriptive and quantitative data collected from desalination plants and irrigation district managers through technical questionnaires and personal interviews. The results show how seawater desalination is effectively alleviating the regional constraints in the irrigated agriculture supply, and why it is becoming strategic to maintaining food production and socioeconomic development. However, the high-energy requirements and associated costs in comparison with other water sources limit a more widespread use for agriculture, and for this reason desalinated water still only plays a complementary role in most irrigation districts.


Desalination ◽  
2010 ◽  
Vol 252 (1-3) ◽  
pp. 135-142 ◽  
Author(s):  
Tahereh Kaghazchi ◽  
Mahdieh Mehri ◽  
Maryam Takht Ravanchi ◽  
Ali Kargari

2021 ◽  
Vol 13 (17) ◽  
pp. 9552
Author(s):  
Muna Hindiyeh ◽  
Aiman Albatayneh ◽  
Rashed Altarawneh ◽  
Mustafa Jaradat ◽  
Murad Al-Omary ◽  
...  

This work suggests a solution for preventing/eliminating the predicted Sea Level Rise (SLR) by seawater desalination and storage through a large number of desalination plants distributed worldwide; it also comprises that the desalinated seawater can resolve the global water scarcity by complete coverage for global water demand. Sea level rise can be prevented by desalinating the additional water accumulated into oceans annually for human consumption, while the excess amount of water can be stored in dams and lakes. It is predicted that SLR can be prevented by desalination plants. The chosen desalination plants for the study were Multi-Effect Desalination (MED) and Reverse Osmosis (RO) plants that are powered by renewable energy using wind and solar technologies. It is observed that the two main goals of the study are fulfilled when preventing an SLR between 1.0 m and 1.3 m by 2100 through seawater desalination, as the amount of desalinated water within that range can cover the global water demand while being economically viable.


Sign in / Sign up

Export Citation Format

Share Document