Effect of Natural Aging of Timber Building Structures on Fire Behavior and Fire Safety

Author(s):  
Roza Aseeva ◽  
Boris Serkov ◽  
Andrey Sivenkov
2021 ◽  
pp. 12-17
Author(s):  
Юрий Николаевич Шебеко ◽  
Алексей Юрьевич Шебеко

Проведен краткий анализ понятий, связанных с расчетом пределов огнестойкости строительных конструкций. Дано определение термина «фактический предел огнестойкости», которое отсутствует в нормативных документах по пожарной безопасности. Отмечено, что это связано с использованием на практике значений пределов огнестойкости, определенных для стандартных температурных режимов пожара, в то время как на практике указанные температурные режимы, как правило, отличаются от стандартных. Предложена концепция определения фактического предела огнестойкости, основанная на моделировании воздействия на строительную конструкцию температурного режима реального пожара (например, с помощью программного комплекса FDS 6). The brief analysis of definitions connected with estimation of fire resistance limits of building structures is conducted. There is given the determination of term “actual fire resistance limit” that is absent in fire safety normative documents. It is caused by practical application of the fire resistance limits determined for standard temperature regimes of fires only, but at the same time the temperature regimes of real fires as a rule differ from the standard regimes. There is proposed the method for determination of the actual fire resistance limit based on the modeling of influence of the real fire temperature regime on buildings structures. This modeling can be made by an application of CFD methods (for example, with the help of FDS 6 software complex). The required reliability of the building structure is considered. The proposed method can solve the problem of practical applicability of certain structural unit during designing buildings and structures, for which the use of the resistance limits obtained for the standard fire temperature regimes can lead to unjustified economic expenditures without an appropriate elevation of fire safety level of the object.


Fire Safety ◽  
2019 ◽  
pp. 5-9
Author(s):  
O. I. Bashynskiy ◽  
M. Z. Peleshko ◽  
T. G. Berezhanskiy

The article is dedicated to the fire resistance limit of building structures of the objects for the storage of flammable and combustible liquids. Today, oil stores are very important elements of the oil supply system in Ukraine. The analysis of literary sources has shown that fires in oil stores cause extra fire hazard of surrounding objects. Increasing of their scales requires further improvement of fire safety measures during planning and using of oil stores. Fires in such buildings are tricky and large; they cause great harm and often lead to the death of people; their liquidation is very difficult. Theoretical calculations shown that the collapse of structures of the packaged oil stores and, as a result, significant material losses and the threat to people's life and health, were resulted from the incorrect selection of building structures and the discrepancy between the fire resistance of these structures and the applicable norms and requirements for such buildings. Fire Safety, №34, 2019 9 Fire resistance limit of the metal double-T pillar made of steel ВСт3пс4 (profile size number 30) was calculated in the article. Such constructions are used in oil stores. The obtained fire resistance limit of a metal double-T pillar is about 16 minutes (R 16). According to the normative documents for buildings of this type (the degree of fire resistance of the building – III), it should be 120 minutes (R 120). Even if the calculation method has an error due to the choice of another steel grade, objectively none of the double-T profiles from the assortment list would provide proper fire resistance limit.


2005 ◽  
Vol 11 (22) ◽  
pp. 237-242
Author(s):  
Yasushi TAKEI ◽  
Seiji YAMADA ◽  
Daisuke KAMIKAWA ◽  
Yuji HASEMI

2016 ◽  
Vol 820 ◽  
pp. 396-401
Author(s):  
Zuzana Lišková ◽  
Juraj Olbřímek

The paper deals with the solution of interconnections of flue and combustible construction products in the fire safety design. It is focused mainly on a prescribed value of safe distance of the wooden building construction from a single-walled metal chimneys. The aim of article is to point out the necessity to solve the contradictory requirements in the Slovak legislation and inconsistency with the foreign regulations in terms of fire rates caused by chimneys and flues.


2014 ◽  
Vol 1057 ◽  
pp. 204-211
Author(s):  
Róbert Leško ◽  
Martin Lopušniak

Fire safety, as one of six basic requirements for structures in Slovakia, does not reflect the increase of innovative solutions during last years in the field of building industry. At the present time, energy economy of structures sets the character of structures forming the heat exchange envelope of the building. Continuous demand for the application of ecological materials increases requirements for optimizing the existing or creating new procedures in the solution of fire safety of structures. The existing classification of building structures appears, from the point of view of fire safety, as insufficient one. Comparative analysis of different structural compositions of external cladding is the method that demonstrates in this paper unsuitability of criteria set. The development of new procedures can make more effective and can optimize requirements without any negative impacts on resulting fire safety of the structure.


2005 ◽  
Vol 5 (5) ◽  
pp. 395-405
Author(s):  
G.Q. Li ◽  
S.X. Guo ◽  
S.C. Jiang

2014 ◽  
Vol 638-640 ◽  
pp. 197-201
Author(s):  
Yan Chong Pan ◽  
Guo Hui Wang ◽  
Kai Xiang

Fire safety is one of the most important performances index to evaluate building structures. The property of building members after exposure to fire involved with the safety of buildings after fire, and it will be necessary to estimate the post-fire residual strength of the structure in order to decide the appropriate strategy for repair. This paper summarizes the research progress of concrete-filled steel tubular (CFST) columns. Basic mechanical properties of conventional CFST columns after exposure to fire, CFST columns after the whole fire exposure process under sustained axial load, and CFST columns with special forms after exposure to fire are discussed.


2020 ◽  
Vol 11 (3) ◽  
pp. 311-324
Author(s):  
Eva Lubloy

Purpose The aim of the research was to investigate the effect of concrete strength on the fire resistance of structures. At first, it may seem contradictory that higher concrete strengths can decrease the fire resistance of building structures. However, if the strength of the concrete exceeds a maximum value, the risk of spalling (the detachment of the concrete surface) significantly. Design/methodology/approach Prefabricated structural elements are often produced with higher strength. The higher concrete strengths generally do not cause a reduction in the load bearing capacity, but it can have serious consequences in case of structural fire design. Results of two prefabricated elements, namely, one slab (TT shaped panel) and one single layer wall panel, were examined. Results of the specimen with the originally designed composition and a specimen with modified concrete composition were examined, were polymer fibres were added to prevent spalling. Findings As a result of the experiments, more strict regulations in the standards the author is suggested including more strict regulations in the standards. It has been proved that to ensure the fire safety of the reinforced concrete structures, it is required after polymer fibres even in lower concrete strength class than prescribed by the standard. In addition, during the classification and evaluation of structures, it is advisable to introduce an upper limit of allowed concrete strength for fire safety reasons. Originality/value As a result of the experiments, the author suggests including more strict regulations in the standards. It has been proved that to ensure the fire safety of the reinforced concrete structures, it is necessary to require the addition of polymer fibres even in lower concrete strength class than prescribed by the standard. In addition, during the classification and evaluation of structures, it is advisable to introduce an upper limit of allowed concrete strength for fire safety reasons.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6433
Author(s):  
Jadwiga Fangrat ◽  
Katarzyna Kaczorek-Chrobak ◽  
Bartłomiej K. Papis

Electrical installations are a significant component of fire load inside a building, although they are often neglected in the overall fire safety analysis and are not subjected to any kind of fire safety evaluation of a building. A typical electrical installation unconnected to the mains was experimentally studied using a single burning item (SBI) test apparatus, fixed to two types of popular non-combustible or combustible (wooden-based) backgrounds simulating a typical building internal wall or ceiling. The semi-real scale test showed that poly(vinyl chloride) (PVC) cable, commonly used in installations in buildings in Europe and used in SBI tests, showed high fire properties related to heat release, smoke production and flame spread to other interior elements. The results of the electrical circuit connected to the main measurements carried out showed a significant impact of the heating effect towards the uncovered surface socket, causing the possibility of easy ignition inside the installation. In conclusion, it was found that even a relatively simple and short section of electrical installation resulted in a significant increase in the heat release rate and smoke generation parameters, obtained during the SBI tests, and as a consequence a reduction of one or two reaction to fire euroclasses of construction materials for internal walls.


2021 ◽  
Vol 30 (5) ◽  
pp. 5-22
Author(s):  
B. A. Klementev ◽  
A. V. Kalach ◽  
M. V. Gravit

Introduction. Currently, national standards and codes of practice contain deterministic values of the fire resistance of building structures of facilities of the Russian fuel and energy complex (FEC), while a probabilistic approach to determining their fire resistance is not specified in the Russian regulatory documents. The methodology of the probabilistic approach to the fire resistance of structures is detailed in API 2218 “Fireproofing Practices in Petroleum and Petrochemical Processing Plants”, developed by the American Petroleum Institute.Methods. A comparative analysis of the Russian regulatory documents on fire safety and API 2218 in terms of the established concepts of fireproofing and requirements for the fire resistance limits of building structures of oil and gas industry facilities, is carried out.Results. It was established that the Russian Federation has no regulatory documents establishing methods based on the probabilistic approach, including determination of the required fire resistance limits and points of application of fire-resistant coatings at facilities of the fuel and energy complex by analogy with international standard API 2218.Conclusion. Based on the analysis, it was concluded that approaches to the philosophy of the fire resistance of structures of buildings and structures of the fuel and energy complex in the documents under consideration are fundamentally different. In order to improve the Russian regulatory and technical framework, governing fire safety and fire resistance, it is proposed to consider the requirements of foreign documents that take into account proven international engineering and technical practices, in particular, the use of a probabilistic approach taking into account hydrocarbon fires.


Sign in / Sign up

Export Citation Format

Share Document