Fundamental Parameters and the Helium Content of Eclipsing Spectroscopic Binaries

1978 ◽  
pp. 433-436 ◽  
Author(s):  
H. E. Jørgensen
1978 ◽  
Vol 80 ◽  
pp. 433-436
Author(s):  
H.E. Jørgensen

Today we know accurate masses, radii, surface gravities and luminosities or effective temperatures of a very small number of stars. There are several reasons for deriving accurate parameters of stars. I shall mention only four problems:(i)checking stellar evolution calculations, particularly calculations of isochrones, using binaries,(ii)derivation of helium content in stars of different age,(iii)checking log g derived from photometry and stellar atmosphere calculations,(iv)determination of accurate positions in the HR diagram to get an independent check on calibrations of photometric systems.


1995 ◽  
Vol 166 ◽  
pp. 193-202
Author(s):  
J.T. Armstrong

Long-baseline optical interferometry has made it possible to measure the visual orbits of binary stars with major axes as small as 5 mas and errors of ≲ 100 μas. Interferometers now nearing completion will extend these values to ≳ 500 μas and σa ∼ 10 μas. Observations of double-lined spectroscopic binaries with current interferometers have already yielded some mass estimates with precisions rivaling those from fitting the light curves of eclipsing double-lined systems. Luminosity estimates based on combined visual interferometric observations and velocity curves are often more precise than those from more indirect methods based on estimates of Teff. New interferometers now coming into operation will make it possible to measure fundamental parameters in dozens to hundreds of binary systems.


2014 ◽  
pp. 1-21
Author(s):  
S. Jankov ◽  
Z. Cvetkovic ◽  
R. Pavlovic

The past several decades have seen accelerating progress in improving binary stars fundamental parameters determinations, as new observational techniques have produced visual orbits of many spectroscopic binaries with a milli arcsecond precision. Modern astrometry is rapidly approaching the goal of sub-milli arcsecond precision, and although presently this precision has been achieved only for a limited number of binary stars, in the near future this will become a standard for very large number of objects. In this paper we review the representative results of techniques which have already allowed the sub-milli arcsecond precision like the optical long baseline interferometry, as well as the precursor techniques such as speckle interferometry, adaptive optics and aperture masking. These techniques provide a step forward from milli to sub-milli arcsecond precision, allowing even short period binaries to be resolved, and often resulting in orbits allowing precisions in stellar dynamical masses better than 1%. We point out that such unprecedented precisions should allow for a significant improvement of our comprehension of stellar physics and other related astrophysical topics.


1999 ◽  
Vol 190 ◽  
pp. 563-566
Author(s):  
J. D. Pritchard ◽  
W. Tobin ◽  
J. V. Clausen ◽  
E. F. Guinan ◽  
E. L. Fitzpatrick ◽  
...  

Our collaboration involves groups in Denmark, the U.S.A. Spain and of course New Zealand. Combining ground-based and satellite (IUEandHST) observations we aim to determine accurate and precise stellar fundamental parameters for the components of Magellanic Cloud Eclipsing Binaries as well as the distances to these systems and hence the parent galaxies themselves. This poster presents our latest progress.


2013 ◽  
Vol 41 (4) ◽  
pp. 232-246
Author(s):  
Timo Völkl ◽  
Robert Lukesch ◽  
Martin Mühlmeier ◽  
Michael Graf ◽  
Hermann Winner

ABSTRACT The potential of a race tire strongly depends on its thermal condition, the load distribution in its contact patch, and the variation of wheel load. The approach described in this paper uses a modular structure consisting of elementary blocks for thermodynamics, transient excitation, and load distribution in the contact patch. The model provides conclusive tire characteristics by adopting the fundamental parameters of a simple mathematical force description. This then allows an isolated parameterization and examination of each block in order to subsequently analyze particular influences on the full model. For the characterization of the load distribution in the contact patch depending on inflation pressure, camber, and the present force state, a mathematical description of measured pressure distribution is used. This affects the tire's grip as well as the heat input to its surface and its casing. In order to determine the thermal condition, one-dimensional partial differential equations at discrete rings over the tire width solve the balance of energy. The resulting surface and rubber temperatures are used to determine the friction coefficient and stiffness of the rubber. The tire's transient behavior is modeled by a state selective filtering, which distinguishes between the dynamics of wheel load and slip. Simulation results for the range of occurring states at dry conditions show a sufficient correlation between the tire model's output and measured tire forces while requiring only a simplified and descriptive set of parameters.


2020 ◽  
Vol 86 (10) ◽  
pp. 5-9
Author(s):  
D. G. Filatova ◽  
A. A. Arkhipenko ◽  
M. A. Statkus ◽  
V. V. Es’kina ◽  
V. B. Baranovskaya ◽  
...  

An approach to sorptive separation of Se (IV) from solutions on a novel S,N-containing sorbent with subsequent determination of the analyte in the sorbent phase by micro-x-ray fluorescence method is presented. The sorbent copolymethylenesulfide-N-alkyl-methylenamine (CMA) was synthesized using «snake in the cage» procedure and proven to be stable in acid solutions. Conditions for quantitative extraction of Se (IV) were determined: sorption in 5 M HCl or 0.05 M HNO3 solutions when heated to 60°C, phase contact time being 1 h. The residual selenium content in the solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) using 82Se isotope. The absence of selenium losses is proved and the mechanism of sorption interaction under specified conditions is proposed. The method of micro-x-ray fluorescence analysis (micro-RFA) with mapping revealed a uniform distribution of selenium on the sorbent surface. The possibility of determining selenium in the sorbent phase by micro-RFA is shown. When comparing the obtained results with the results of calculations by the method of fundamental parameters, it is shown the necessity of using standard samples of sorbates to obtain correct results of RFA determination of selenium in the sorbent phase.


1983 ◽  
Vol 48 (10) ◽  
pp. 2735-2739
Author(s):  
Jiří Fusek ◽  
Oldřich Štrouf ◽  
Karel Kuchynka

The class structure of transition metals chemisorbing carbon monoxide was determined by expressing the following fundamental parameters in the form of functions: The molar heat capacity, the 1st and 2nd ionization energy, the heat of fusion, Pauling electronegativity, the electric conductivity, Debye temperature, the atomic volume of metal. Adsorption heats have been predicted for twelve transition metals.


Author(s):  
Ronnie Mackay ◽  
Warren Brookbanks

Fitness to plead is an area of growing importance in most Western jurisdictions. It challenges the justification for criminalisation wherever a person’s mental capacity calls into question their ability to participate meaningfully in a trial. However, the doctrine has proven difficult to apply in practice, with many legislative models represented across the jurisdictions. How best to formulate rules for the fair trial of those with mental or physical incapacity and how to manage the issue of disposition following a finding of unfitness is a challenge in most countries. These and other issues are explored in this book through the insights of domestic and international scholars who are familiar with the law around unfitness to stand trial. This chapter broadly describes the fundamental parameters and human rights aspects of the fitness-to-plead doctrine, and concludes with a brief account of the essential elements of each chapter.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3832
Author(s):  
Rubén Agregán ◽  
Noemí Echegaray ◽  
María López-Pedrouso ◽  
Radwan Kharabsheh ◽  
Daniel Franco ◽  
...  

Proteomics is a new area of study that in recent decades has provided great advances in the field of medicine. However, its enormous potential for the study of proteomes makes it also applicable to other areas of science. Milk is a highly heterogeneous and complex fluid, where there are numerous genetic variants and isoforms with post-translational modifications (PTMs). Due to the vast number of proteins and peptides existing in its matrix, proteomics is presented as a powerful tool for the characterization of milk samples and their products. The technology developed to date for the separation and characterization of the milk proteome, such as two-dimensional gel electrophoresis (2DE) technology and especially mass spectrometry (MS) have allowed an exhaustive characterization of the proteins and peptides present in milk and dairy products with enormous applications in the industry for the control of fundamental parameters, such as microbiological safety, the guarantee of authenticity, or the control of the transformations carried out, aimed to increase the quality of the final product.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


Sign in / Sign up

Export Citation Format

Share Document