Tolerance of ten crop species to atmospheric ammonia during seed germination, radicle and coleoptile growth

Author(s):  
Christopher W. Dowling
2010 ◽  
Vol 46 (2) ◽  
pp. 231-242 ◽  
Author(s):  
S. J. GOUSSOUS ◽  
N. H. SAMARAH ◽  
A. M. ALQUDAH ◽  
M. O. OTHMAN

SUMMARYA laboratory experiment was conducted to determine the effect of ultrasound (US) treatment on seed germination of chickpea, wheat, pepper and watermelon. All tests were carried out at 40 kHz in a water bath ultrasonic device varying two factors, treatment duration (5, 10, 15, 30, 45 or 60 min) and germination temperature (15 or 20 °C). Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. The effects of US on seed germination varied between crops and were more obvious on germination speed, expressed as germination rate index (GRI), rather than on germination percentage (GP). In particular, US treatment significantly increased the GRI of chickpeas, wheat and watermelon, resulting in a maximum increase of 133% (at 45 min), 95% (30 min) and 45% (5 min), respectively, above control seeds. The beneficial effects of US on the GRI of these crops were observed at both 15 and 20 °C, suggesting that US treatment offers a practical priming method to overcome the slow germination that may occur at low temperatures. Water-soaking treatment improved the GP of both chickpea and pepper seeds by 59 and 24%, respectively, compared to the control but neither water nor US had any positive effect on pepper GRI. Post-treatment measurement of moisture content of these seeds produced variable results depending on crop species and US treatment duration. Results of this research indicated that US treatment effectively enhanced speed of germination of chickpea, wheat and watermelon seeds. This increase in speed of germination may improve early field establishment of these crops in the semiarid Mediterranean region and thus needs further investigation. The US technique may also be very useful for plant propagators in nurseries to achieve fast seedling establishment of watermelon.


2011 ◽  
Vol 83 (3) ◽  
pp. 1091-1096 ◽  
Author(s):  
Daniel D.C. Carvalho ◽  
Denilson F. Oliveira ◽  
Vicente P. Campos ◽  
Moacir Pasqual

In order to select phytotoxin producing rhizobacteria to control weed plants, twenty five bacterial strains previously isolated from the rhizospheres of various plants were grown in a liquid medium and, after cell removal by centrifugation, the liquid phases were freeze-dried and the products were extracted with ethyl acetate/methanol. The extracts were concentrated to dryness under vacuum and dissolved in water and sucrose solution to be submitted to in vitro assays of lettuce (Lactuca sativa L.) seed germination and wheat (Triticum aestivum L.) coleoptile growth. Although most samples affected coleoptile growth, only those from four strains reduced lettuce seed germination. Two strains of Bacillus cereus, one strain of B. pumilus and one of Stenotrophoonas altophilia were the most promising microorganisms for producing phytotoxin and, consequently, for the development of new weed control products.


2020 ◽  
Vol 48 (1) ◽  
pp. 11-20
Author(s):  
Mei Zhao ◽  
Ron Walcott

Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, is a seed-transmitted disease of cucurbit crop species. During seed-to-seedling transmission of BFB, A. citrulli initially grows as a saprophyte on germinating seeds and subsequently switches to a pathogenic mode. We investigated the effect of temperature on A. citrulli colonisation of germinating watermelon seeds. Seeds were vacuum-infiltrated with 106 CFU/ml A. citrulli, germinated at 28°C and 100% relative humidity, and transferred to 40°C at different times. Mean BFB incidence was significantly lower for seeds that were sown at 28°C and transferred to 40°C three days after sowing (DAS), compared with seeds incubated constantly at 28°C. Seeds showed reduced mean BFB transmission percentages when transferred from 28 to 40°C at 3 DAS, regardless of initial A. citrulli concentration. The effect of increased temperature on BFB seedling transmission was reversible regardless of the initial A. citrulli inoculum concentration. Furthermore, the A. citrulli population on germinating watermelon seedlings that were transferred from 28 to 40°C at 3 DAS was significantly lower than seedlings maintained at 28°C. We conclude that A. citrulli cells associated with germinating watermelon seeds are more sensitive to elevated temperature during the first 3 DAS relative to the later days.


Author(s):  
Costales Daimy ◽  
Nápoles M. C. ◽  
Falcón- C. Rodríguez ◽  
Alejandro González-Anta ◽  
Gustavoo Petit ◽  
...  

Chitosan is applied to stimulate seed germination and to extend in various crop species. The aim of this work was to evaluate a chitosan polymer on the viability of Bradyrhizobium japonicum on seeds and their effect to improve seed and bacteria survival and soybean nodulation in two application sequences inoculant- polymer and different storage times. The polymer did not affect the bacteria viability on seeds, neither seed survival. The application of chitosan before the inoculant had the best percentages of germinated seeds and the seedlings quality. Chitosan concentrations between 100 and 1000 mg L-1 favoured germination, the number of bacteria colonies on seeds and the soybean nodulation until 30 days of seed storage.


Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 734-737 ◽  
Author(s):  
Randy L. Anderson

A field experiment was conducted to determine the influence of metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and/or chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl)benzenesulfonamide} on germination, coleoptile growth, and mineral accumulation of seed from treated parent plants. The herbicides were applied postemergence in the spring to ‘Vona’ and ‘Centurk’ winter wheat (Triticum aestivumL.). The rate of metribuzin was 360 g ai/ha, with chlorsulfuron applied at 18, 35, or 70 g/ha. Metribuzin reduced grain yields of both varieties approximately 40%, whereas chlorsulfuron at the higher rates reduced grain yields of only Vona. Seed germination was not affected by either herbicide, but metribuzin, when applied alone, reduced coleoptile growth of Vona seed. The addition of chlorsulfuron to metribuzin eliminated this growth reduction. The mineral concentration of the seed of both varieties indicated that metribuzin and chlorsulfuron did not affect mineral translocation to the seed by the parent plant.


2020 ◽  
Vol 100 (5) ◽  
pp. 495-503
Author(s):  
Aaron W. Green ◽  
Miranda A. Meehan ◽  
Thomas M. DeSutter

Oil and gas development is often associated with the production of produced water or “brine”, which is a solution of dissolved salts (NaCl ≈ 90%) exhibiting electrical conductivity (EC) upwards of 200 dS m−1. Accidental releases of brine to soils inhibit seed germination through osmotic and ionic stressors. The final germination (FG; %) of four crop species, Hordeum vulgare L. (barley), Helianthus annuus L. (sunflower), Carthamus tinctorius L. (safflower), Beta vulgaris L. (sugar beet); and four graminoid species, Pascopyrum smithii (Rydb.) Barkworth & D.R. Dewey (western wheatgrass), Elymus hoffmannii K.B. Jensen & Asay (AC Saltlander), Leymus triticoides (Buckley) Pilg. (beardless wildrye), and Elymus trachycaulus (Link) Gould ex Shinners (slender wheatgrass), were determined using sodium chloride (NaCl) and brine solutions prepared at EC levels of 0, 4, 8, 16, 24, and 32 dS m−1. No differences (p > 0.05) in FG were found between NaCl and brine solutions across graminoid species or the crop species barley, sunflower, and sugar beet. AC Saltlander had the highest FG (81.9%) at the maximum EC level (32 dS m−1), compared with 47.2% and 0.8% for western wheatgrass and beardless wildrye, respectively. Within crop species, safflower exhibited the highest germination (10%–30%) across both solutions at 32 dS m−1. Barley (0%–2.9%), sugar beet (4.9%–7.7%), and sunflower (0%–1.4%) exhibited low germination at 32 dS m−1. The implications of this experiment are that previously established NaCl tolerance indices may be used to accurately determine the FG of plant species in brine-contaminated soils and that AC Saltlander, as well as western wheatgrass, have the highest FG at 32 dS m−1, indicating these species may have the greatest potential for successfully revegetating brine-contaminated soils.


Sign in / Sign up

Export Citation Format

Share Document