ENHANCING SEED GERMINATION OF FOUR CROP SPECIES USING AN ULTRASONIC TECHNIQUE

2010 ◽  
Vol 46 (2) ◽  
pp. 231-242 ◽  
Author(s):  
S. J. GOUSSOUS ◽  
N. H. SAMARAH ◽  
A. M. ALQUDAH ◽  
M. O. OTHMAN

SUMMARYA laboratory experiment was conducted to determine the effect of ultrasound (US) treatment on seed germination of chickpea, wheat, pepper and watermelon. All tests were carried out at 40 kHz in a water bath ultrasonic device varying two factors, treatment duration (5, 10, 15, 30, 45 or 60 min) and germination temperature (15 or 20 °C). Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. The effects of US on seed germination varied between crops and were more obvious on germination speed, expressed as germination rate index (GRI), rather than on germination percentage (GP). In particular, US treatment significantly increased the GRI of chickpeas, wheat and watermelon, resulting in a maximum increase of 133% (at 45 min), 95% (30 min) and 45% (5 min), respectively, above control seeds. The beneficial effects of US on the GRI of these crops were observed at both 15 and 20 °C, suggesting that US treatment offers a practical priming method to overcome the slow germination that may occur at low temperatures. Water-soaking treatment improved the GP of both chickpea and pepper seeds by 59 and 24%, respectively, compared to the control but neither water nor US had any positive effect on pepper GRI. Post-treatment measurement of moisture content of these seeds produced variable results depending on crop species and US treatment duration. Results of this research indicated that US treatment effectively enhanced speed of germination of chickpea, wheat and watermelon seeds. This increase in speed of germination may improve early field establishment of these crops in the semiarid Mediterranean region and thus needs further investigation. The US technique may also be very useful for plant propagators in nurseries to achieve fast seedling establishment of watermelon.

1975 ◽  
Vol 5 (3) ◽  
pp. 419-423 ◽  
Author(s):  
Carey Borno ◽  
Iain E. P. Taylor

Stratified, imbibed Douglas fir (Pseudotsugamenziesii (Mirb.) Franco) seeds were exposed to 100% ethylene for times between 0 and 366 h. Germination rate and germination percentage were increased by treatments up to 48 h. The 12-h treatment gave largest stimulation; 30% enhancement of final germination percentage over control. Treatment for 96 h caused increased germination rate for the first 5 days but reduced the germination percentage. Germinants were subject to continuous exposure to atmospheres containing 0.1 – 200 000 ppm ethylene in air, but it did not stimulate growth, and the gas was inhibitory above 100 ppm. Although some effects of high concentrations of ethylene may have been due to the lowering of oxygen supplies, this alone was insufficient to account for the full inhibitory effect. The mechanism of stimulation by short-term exposure to ethylene is discussed.


2021 ◽  
Vol 43 ◽  
Author(s):  
Nancy Araceli Godínez-Garrido ◽  
Juan Gabriel Ramírez-Pimentel ◽  
Jorge Covarrubias-Prieto ◽  
Francisco Cervantes-Ortiz ◽  
Artemio Pérez-López ◽  
...  

Abstract: Chitosan is a biopolymer obtained from deacetylation of chitin; it has multiple applications in agriculture as an antifungal, soil conditioner, inducer of defense mechanisms, fruits postharvest coating, leaves and seeds, among others. The objective in this research was to evaluate the effect of chitosan coatings mixed with fungicide (dithiocarbamate) on the germination and germination speed of bean and maize seeds in storage and to determine the retention capacity of the fungicide in the coated seeds under different times of imbibition. Two coating treatments at concentrations of 0.1 and 0.5% chitosan in water, two coatings treatments at 0.1 and 0.5% chitosan supplemented with 0.5% fungicide and a coating without chitosan using only 0.5% fungicide in water were used in bean and maize seed; and as control seeds imbibed in distilled water were used; after treatments, germination percentage and germination speed were determined, also fungicide release were determined at 0, 1, 2 and 6 h of imbibition, and the effect of storage time on germination and germination speed was determined at 30, 60, 90, 120, 150 and 180 days of storage at 4 °C and 45% relative humidity. The fungicide release effect was determined by inhibiting Fusarium oxysporum conidia germination. There were no negative effects of coatings on seed germination after storage. The treatment that provided both greater retention of the fungicidal agent and released it gradually, was 0.5% chitosan mixed with fungicide concentration. Chitosan coating seeds mixed with fungicide do not cause negative changes in seed germination or germination rate.


2021 ◽  
Vol 1 (01) ◽  
pp. 27-30
Author(s):  
IRANI KHATUN ◽  
RIYAD HOSSEN

Seed germination performance test of Taherpuri onion (a local variety of onion) under six different temperatures (15, 20, 25, 30, 35 and 40°C) was the main goal of this experiment. Germination percentage (GP) was calculated at highest 60.25% at 25°C, and the highest germination rate 20.08 was observed in the same temperature condition. The lowest germination performance (13.25 % germi-nation and 3.32 seeds per day as germination rate) was found at 40°C temperature. Finally, the authors mentioned the temperature 20 to 30°C as optimum range, and suggested the temperature 25°C as best suited for obtaining highest results in case of both germination percentage and germination rate of these seeds. To produce maximum seedlings of the local variety of onion, the mentioned temperature should be followed by the local farmers.


2019 ◽  
Vol 15 (3) ◽  
pp. 563
Author(s):  
Erida Derita Dalame ◽  
Bertje Richard Albert Sumayku ◽  
Jeany Polii - Mandang

This study aims to determine the dose of Trichoderma koningii which can induce soursop germination; know the best soaking time that can affect the induction of soursop germination; to know the interaction between soaking time and Trichoderma koningii dose on soursop germination. This research was conducted in April - June 2019 at the Green House of Plant Sciences, Faculty of Agriculture, Sam Ratulangi University, Manado. The material used in this study was soursop seed obtained from Lota Village, Pineleng Tomohon Subdistrict, Trichoderma koningii with 106 solids obtained from the North Sulawesi Province Plant Protection Center Collection, Aquadest, 70% Alcohol, 80% Acetone, sandalready sifter and sterilized. This research was arranged in factorial with a Completely Randomized Design (CRD) consisting of two factors, namely 5 treatments of Trichoderma koningii dose and 4 immersion treatments repeated three times (3x) so that a total of 60 treatment units. Each treatment unituses 10 seeds. The results of this study indicated that the dose of Trichoderma koninggi 200 g without soaking can increase the germination power by 86.67% and the vigor index by 32.96%; Immersion with Koninggi Trichoderma suspension has not been able to induce soursop seed germination rate; Theinteraction between Trichoderma koningii dose and soaking time did not affect the speed of soursop seed germination.*eprm*


2013 ◽  
Vol 55 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Ertan Yildirim ◽  
Atilla Dursun ◽  
Metin A. Kumlay ◽  
Ísmail Güvenç

This research was conducted to determine the effects of two biostimulants (humic acid and biozyme) or three different salt (NaCl) concentrations at the temperature 10, 15, 20 and 25°C on parsley, leek, celery, tomato, onion, lettuce, basil, radish and garden cress seed germination. Two applications of both biostimulants increased seed germination of parsley, celery and leek at all temperature treatments. Germination rate decreased depending on high salt concentrations. At different salt and temperature levels garden cress was characterised by the highest germination percentage compared to other vegetable species.Interactions between NaCl concentrations and temperatures, as welI as biostimulants and temperatures were significant at p=0.001 in for all vegetable species except onion in NaCl concentrations and temperatures compared to that of the control.


Revista CERES ◽  
2010 ◽  
Vol 57 (5) ◽  
pp. 576-580 ◽  
Author(s):  
Cristiane Pimentel Victório ◽  
Nina Cláudia Barbosa da Silva ◽  
Maria Apparecida Esquibel ◽  
Alice Sato

This study was carried out to investigate the effects of light spectra, additional UV-A, and different growth regulators on the in vitro germination of Senecio cineraria DC. Seeds were surface-sterilized and inoculated in MS medium to evaluate the following light spectra: white, white plus UV-A, blue, green, red or darkness. The maximum germinability was obtained using MS0 medium under white light (30%) and MS + 0.3 mg L-1 GA3 in the absence of light (30.5%). S. cineraria seeds were indifferent to light. Blue and green lights inhibited germination. Different concentrations of gibberellic acid (GA3) (0.1; 0.4; 0.6; 0.8; 1.0 and 2.0 mg L-1) and indole-3-acetic acid IAA (0.1; 0.3 and 1.0 mg L-1) were evaluated under white light and darkness. No concentration of GA3 enhanced seed germination percentage under white light. However, when the seeds were maintained in darkness, GA3 improved germination responses in all tested concentrations, except at 1.0 mg L-1. Under white light, these concentrations also increased the germination time and reduced germination rate. Germination rate, under light or darkness, was lower using IAA compared with GA3.


Botany ◽  
2012 ◽  
Vol 90 (8) ◽  
pp. 731-742 ◽  
Author(s):  
Félix Pérez-García ◽  
Federico Varela ◽  
M. Elena González-Benito

Gentiana lutea L. (yellow gentian, Gentianaceae) is an important medicinal plant under protection as endangered species in most European countries. The aim of this work was to evaluate variation in seed mass, seed water content, and seed germination among 56 wild accessions of G. lutea. The effect of gibberellic acid (GA3), putrescine, moist chilling, and level of ripeness of seeds on subsequent germination was also investigated. Seeds of G. lutea showed physiological dormancy (final germination percentages ranged from 0% to 11%, depending on the accession) and GA3 enhanced seed germination drastically in all the accessions. The highest germination (99%) of GA3-treated seeds was reached at 15 °C. Final germination percentage and germination rate (as expressed by mean germination time), as well as seed mass and seed water content, varied significantly among accessions. In general, 1 year moist chilling did not significantly enhance G. lutea seed germination. For most accessions, no significant differences were found between fully ripe seeds and less ripe seeds for seed water content, seed mass, and seed germination. Applications of GA3 were always most effective than those of putrescine for increasing seed germination.


2017 ◽  
Vol 18 (1) ◽  
pp. 17
Author(s):  
Fatimatuz Zuhro ◽  
Hasni Ummul Hasanah ◽  
Sukadi Sukadi

Redpalm isornamentplantwhichpotentiallytobecultured.Thescarcityofredpalmmadeithashighmarket value and need to be preserved. However, the germination growth of red palm is slower than other kinds of palm, so the best way to germinate the red palm seed is needed. The aim of this research is to determine the effect of apliccation some young coconut water concentration and kascing fertilizer to red palm seed germination. The research used factorial completely randomized design with 5 replication, the first factor is young coconut water concentration (0%, 25%, 50%, 75%, and 100%) and the second factor is germination media (steril sand and kascing fertilizer). Variables measured were live germination percentage, speed germination rate, radicula length, and plumula height. Results of this study showed that the best germination media is steril sand and 0% concentration of young coconut water.


2018 ◽  
Vol 10 (2) ◽  
pp. 409-416
Author(s):  
Ratri Tri Hapsari ◽  
Trustinah Trustinah

Salinity is a major abiotic stress limiting mungbean production worldwide including Indonesia. Since mungbean plant is very sensitive to salt condition, selection of salinity tolerant genotypes becomes important for mungbean improvement. The objective of this study was to evaluate the tolerance of eight mungbean genotypes to salinity at seedling stage under different levels. The experiment was arranged in a randomized complete block design with two factors (mungbean genotypes and salinity levels) and triplicates. Observation variables were germination percentage, vigor index, germination rate, hypocotyls length, epicotyls length, root length, number of root, seedling fresh weight, and seedling dry weight. The result showed that increasing level of salinity concentration inhibited the speed of germination, germination percentage, vigor index, normal seedling fresh weight, and number of lateral roots. Murai and Vima 1 were identified as tolerant genotypes, while Vima-2 and MLGV 0180 were identified as salinity sensitive genotypes at seedling stage. Currently, mungbean varieties with special characters, such as saline-tolerant is not yet available. The availability of saline-tolerant variety of mungbean is a cheaper and easier technology for farmers to anticipate the expansion of the saline area. The tolerant genotypes may be further tested at the later stage to obtain promising genotype tolerant to salinity that effectively assist mungbean breeding program.


HortScience ◽  
2016 ◽  
Vol 51 (7) ◽  
pp. 887-891 ◽  
Author(s):  
Khalid M. Elhindi ◽  
Yaser Hassan Dewir ◽  
Abdul-Wasea Asrar ◽  
Eslam Abdel-Salam ◽  
Ahmed Sharaf El-Din ◽  
...  

Peppermint (Mentha piperita), sweet basil (Ocimum basilicum), and coriander (Coriandrum sativum) are important medicinal plants in the pharmacological industry. These plants are produced in commercial scale but their seeds exhibit low germination percentages under favorable germination conditions. Enhancing seed germination is thus crucial for improving the production of these plants. The influence of gibberellic acid (GA3), indole-3-acetic acid (IAA), indol-3-butyric acid (IBA), and naphthalene acetic acid (NAA) on seed germination of the three plants were investigated. The seeds were soaked in each plant growth regulator at 50, 100, and 150 mg·L−1 for 24 hours at 25 ± 2 °C. Seed germination was checked daily for 20 days and germination parameters including final germination percentage (FGP), corrected germination rate (CGRI), and number of days lapsed to reach 50% of FGP (GT50) were recorded. The phosphorus and protein contents were determined in germinated seedlings on day 21 of culture. All plant growth regulators enhanced seed germination as compared with control. However, GA3 improved seed germination more than IAA, IBA, and NAA. GA3 at 100 mg·L−1 significantly increased the FGP from 22.3% and 33.3% (control) to 74% and 65.6% for peppermint and sweet basil, respectively. Low concentration of GA3 at 50 mg·L−1 increased the FGP for coriander from 27% to 52.3%. GA3 also increased CGRI, GT50, phosphorus, and protein contents in germinated seedlings as compared with control. Seeds of peppermint, sweet basil, and coriander possess a physiological dormancy that could be elevated by GA3 presowing treatment. This study established a successful methodology for optimizing seed germination to satisfy the demand for the medicinal parts of these plants in the pharmacological industry.


Sign in / Sign up

Export Citation Format

Share Document