Cell Adhesion Strength to Bioceramics and its Mathematical Model

1992 ◽  
pp. 510-515
Author(s):  
Tetsuya Tateishi ◽  
Takashi Ushida
Author(s):  
Kevin V. Christ ◽  
Kevin T. Turner

Cell adhesion plays a fundamental role in numerous physiological and pathological processes, and measurements of the adhesion strength are important in fields ranging from basic cell biology research to the development of implantable biomaterials. Our group and others have recently demonstrated that microfluidic devices offer advantages for characterizing the adhesion of cells to protein-coated surfaces [1,2]. Microfluidic devices offer many advantages over conventional assays, including the ability to apply high shear stresses in the laminar regime and the opportunity to directly observe cell behavior during testing. However, a key disadvantage is that such assays require cells to be cultured inside closed microchannels. Assays based on closed channels restrict the types of surfaces that can be examined and are not compatible with many standard techniques in cell biology research. Furthermore, while techniques for cell culture in microchannels have become common, maintaining the viability of certain types of cells in channels remains a challenge.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 1612-1620 ◽  
Author(s):  
Baris R. Mutlu ◽  
Taronish Dubash ◽  
Claudius Dietsche ◽  
Avanish Mishra ◽  
Arzu Ozbey ◽  
...  

Cell–cell adhesion strength of freely suspended cell clusters can be measured using an oscillatory inertial microfluidic system.


2006 ◽  
Vol 39 ◽  
pp. S575
Author(s):  
A. Bagno ◽  
M. Dettin ◽  
A. Piovan ◽  
P. Brun ◽  
R. Gambaretto ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 462-468
Author(s):  
Xuan Zhou ◽  
Xin Zhou ◽  
Yichen Du ◽  
Xiaohua Shi ◽  
Pan You ◽  
...  

Regulating cell-substrate adhesion is of fundamental importance in biomaterial design and development. While an increasing number of approaches are being developed to quantify cell adhesion strength, only a fraction of these techniques provide measurements that are simple and sensitive at the living cell population level. In our previous study, the expression of adhesion-associated proteins in fibroblasts was found to change on ion-implanted silicone rubber; however, the actual effects of the modified surfaces on cellular mechanical properties remain to be probed. Here, we proposed a convenient method to compare the cell adhesion strength on various surfaces, for multiple adhesion periods and with different cell types. This method requires only common laboratory equipment. In addition, we introduced a new parameter, ECS50, which is appropriate for screening optimum centrifugal conditions when the cell affinity of the surface as a control is initially unknown. This parameter is helpful for further exploration of cell affinity on all the biomaterials of interest. The results demonstrate that this centrifugation assay is simple, efficient and adaptable in investigating the overall adhesion strength of living cells under various conditions, and therefore, it is a valid way to develop adhesion-controlled biointerface materials in the future.


2011 ◽  
Vol 101 (12) ◽  
pp. 2903-2911 ◽  
Author(s):  
Kranthi Kumar Elineni ◽  
Nathan D. Gallant

2010 ◽  
Vol 21 (19) ◽  
pp. 3317-3329 ◽  
Author(s):  
Zhilun Li ◽  
John G. Lock ◽  
Helene Olofsson ◽  
Jacob M. Kowalewski ◽  
Steffen Teller ◽  
...  

Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell–matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell–vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvβ5, and that active PAK4 induces accelerated integrin αvβ5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvβ5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.


Sign in / Sign up

Export Citation Format

Share Document