Healing of Interface Between Polyvinyl Alcohol (PVA) Fiber and Cement Matrix

Author(s):  
Jishen Qiu ◽  
En-Hua Yang
Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 638 ◽  
Author(s):  
Wenguang Jiang ◽  
Xiangguo Li ◽  
Yang Lv ◽  
Mingkai Zhou ◽  
Zhuolin Liu ◽  
...  

The influence of graphene oxide (GO) and polyvinyl alcohol (PVA) fiber on the mechanical performance, durability, and microstructure of cement-based materials was investigated in this study. The results revealed that compared with a control sample, the mechanical strength and durability of cement-based materials were significantly improved by adding PVA fiber and GO. The compressive and flexural strength at 28 d were increased by 30.2% and 39.3%, respectively. The chloride migration coefficient at 28 d was reduced from 7.3 × 10−12 m2/s to 4.3 × 10−12 m2/s. Under a sulfate corrosion condition for 135 d, the compressive and flexural strength still showed a 13.9% and 12.3% gain, respectively. Furthermore, from the Mercury Intrusion Porosimetry (MIP) test, with the incorporation of GO, the cumulative porosity decreased from more than 0.13 cm3/g to about 0.03 cm3/g, and the proportion of large capillary pores reduced from around 80% to 30% and that of medium capillary pores increased from approximately 20% to 50%. Scanning electron microscope (SEM) images showed a significant amount of hydration products adhering to the surface of PVA fiber in the GO and PVA fiber modified sample. The addition of GO coupling with PVA fiber in cement-based materials could promote hydration of cement, refine the microstructure, and significantly improve mechanical strength and durability.


2021 ◽  
Vol 272 ◽  
pp. 02014
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Lihui Zhang ◽  
Wenxiao Zhang ◽  
Yin Bai ◽  
...  

The influence of polyvinyl alcohol (PVA) fiber volume fraction and fly ash content on the creep behavior of high ductility cementitious composites (HDCC) under compression was investigated. For this investigation, the creep behavior of four HDCC groups with cube compressive strength of 30–50 MPa, PVA fiber volume fraction of 1.5% and 2.0%, and fly ash content of 60% and 80% at 7 d and 28 d loading periods, respectively, were evaluated. A compressive creep model, which reflects the loading age and holding time, was established. The results revealed that when the load was applied at 7 d and 28 d, and then maintained for 245 d, the specific creep of HDCC ranged from 95×10-6/ MPa to 165×10-6/ MPa and from 59×10-6/ MPa to 135 × 10−6/ MPa, respectively. The corresponding creep coefficients ranged from 1.48 to 2.25 and from 1.10 to 1.94, respectively. The PVA fiber volume fraction and fly ash content were the main factors affecting the specific creep of HDCC, which increased with increasing fiber fraction and fly ash content. Under short-term loading, the fiber volume fraction played a leading role in the specific creep, and the fly ash content played the leading role during long-term loading. Furthermore, the specific creep and creep coefficient decreased significantly with increasing loading age. The classical creep model described by a power exponent function is suitable for HDCC.


2015 ◽  
Vol 1123 ◽  
pp. 20-23 ◽  
Author(s):  
Muhammad Miftahul Munir ◽  
Ahmad Fauzi ◽  
Ade Yeti Nuryantini ◽  
Nursuhud ◽  
Eri Sofiari ◽  
...  

Rotary forcespinning is one of techniques used for fabrication of polymer fiber. In this paper optimization of several parameters for synthesis of Polyvinyl Alcohol (PVA) fiber using rotary forcespinning technique was described. In order to obtain PVA fiber with smallest diameter the optimization parameters of solvent system and polymer concentration were performed. The results show that PVA dissolved in water as a single solvent produced fiber with high wettability. A mixture of water and ethanol as a solvent system was developed with variation in ethanol content. The effects of ethanol content on fiber diameter were investigated. Rotary forcespinning using solvent with ethanol content below 30% resulted in PVA fiber with high wettability, while solvent ethanol content of more than 70% was unable to dissolve PVA completely. The effect of PVA concentration on the fiber morphology was investigated by adjusting PVA concentration in the range of 9 to 13 weight %. The diameter of the PVA fiber was uniform and could be controlled by adjusting the PVA concentration.


2019 ◽  
Vol 21 ◽  
pp. 1-4
Author(s):  
Jakub Ďureje ◽  
Zdeněk Prošek ◽  
Jan Trejbal ◽  
Pavel Tesárek

The article describes plasma modifications of the surface of polyvinyl alcohol (PVA) microfibers using oxygen and hydrogen plasma in order to improve the properties of the composite material containing modified microfibers, cement and recyclate. Five different modification times 30, 60, 120, 240 and 480 seconds were applied. Changes on fiber surface were detected by SEM analysis, packed cell wettability measurement, and weight loss during modification. The selected durations of plasma treatment were chosen to produce test samples on which the modulus of elasticity was continuously measured and then bending and compression tests were performed. The measured values were compared with the reference samples. Oxygen modified fibers behavior is more hydrophilic compare with reference fibers, but hydrogen modified fibres behave more hydrophobic than reference fibers.


Sign in / Sign up

Export Citation Format

Share Document