Biochemical Analysis Techniques Integrated on Microfluidic Chips and Their Applications

Author(s):  
Jing Wu ◽  
Jin-Ming Lin
Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 756
Author(s):  
Yi-Lung Chiu ◽  
Ruchi Ashok Kumar Yadav ◽  
Hong-Yuan Huang ◽  
Yi-Wen Wang ◽  
Da-Jeng Yao

Microfluidic biochip techniques are prominently replacing conventional biochemical analyzers by the integration of all functions necessary for biochemical analysis using microfluidics. The microfluidics of droplets offer exquisite control over the size of microliter samples to satisfy the requirements of embryo culture, which might involve a size ranging from picoliter to nanoliter. Polydimethylsiloxane (PDMS) is the mainstream material for the fabrication of microfluidic devices due to its excellent biocompatibility and simplicity of fabrication. Herein, we developed a microfluidic biomedical chip on a PDMS substrate that integrated four key functions—generation of a droplet of an emulsion, sorting, expansion and restoration, which were employed in a mouse embryo system to assess reproductive medicine. The main channel of the designed chip had width of 1200 μm and height of 500 μm. The designed microfluidic chips possessed six sections—cleaved into three inlets and three outlets—to study the key functions with five-day embryo culture. The control part of the experiment was conducted with polystyrene (PS) beads (100 μm), the same size as the murine embryos, for the purpose of testing. The outcomes of our work illustrate that the rate of success of the static droplet culture group (87.5%) is only slightly less than that of a conventional group (95%). It clearly demonstrates that a droplet-based microfluidic system can produce a droplet in a volume range from picoliter to nanoliter.


2016 ◽  
Vol 80 ◽  
pp. 213-231 ◽  
Author(s):  
Jing Wu ◽  
Ziyi He ◽  
Qiushui Chen ◽  
Jin-Ming Lin

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Yuxing Shi ◽  
Peng Ye ◽  
Kuojun Yang ◽  
Jie Meng ◽  
Jiuchuan Guo ◽  
...  

In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.


Author(s):  
George Hug ◽  
William K. Schubert

A white boy six months of age was hospitalized with respiratory distress and congestive heart failure. Control of the heart failure was achieved but marked cardiomegaly, moderate hepatomegaly, and minimal muscular weakness persisted.At birth a chest x-ray had been taken because of rapid breathing and jaundice and showed the heart to be of normal size. Clinical studies included: EKG which showed biventricular hypertrophy, needle liver biopsy which showed toxic hepatitis, and cardiac catheterization which showed no obstruction to left ventricular outflow. Liver and muscle biopsies revealed no biochemical or histological evidence of type II glycogexiosis (Pompe's disease). At thoracotomy, 14 milligrams of left ventricular muscle were removed. Total phosphorylase activity in the biopsy specimen was normal by biochemical analysis as was the degree of phosphorylase activation. By light microscopy, vacuoles and fine granules were seen in practically all myocardial fibers. The fibers were not hypertrophic. The endocardium was not thickened excluding endocardial fibroelastosis. Based on these findings, the diagnosis of idiopathic non-obstructive cardiomyopathy was made.


Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
A. Garg ◽  
W.A.T. Clark ◽  
J.P. Hirth

In the last twenty years, a significant amount of work has been done in the theoretical understanding of grain boundaries. The various proposed grain boundary models suggest the existence of coincidence site lattice (CSL) boundaries at specific misorientations where a periodic structure representing a local minimum of energy exists between the two crystals. In general, the boundary energy depends not only upon the density of CSL sites but also upon the boundary plane, so that different facets of the same boundary have different energy. Here we describe TEM observations of the dissociation of a Σ=27 boundary in silicon in order to reduce its surface energy and attain a low energy configuration.The boundary was identified as near CSL Σ=27 {255} having a misorientation of (38.7±0.2)°/[011] by standard Kikuchi pattern, electron diffraction and trace analysis techniques. Although the boundary appeared planar, in the TEM it was found to be dissociated in some regions into a Σ=3 {111} and a Σ=9 {122} boundary, as shown in Fig. 1.


Author(s):  
J.E. Michaels ◽  
S.A. Garfield ◽  
J.T. Hung ◽  
S.S. Smith ◽  
R.R. Cardell

3H-galactose (gal) and 3H-glucose (glu) were compared to determine which compound was preferable for pulse labeling newly formed hepatic glycogen. Control fed rats were used to achieve substantial and consistent levels of hepatic glycogen and to stimulate glycogen synthesis.Rats fed once daily for 4 hr achieved hepatic glycogen levels > 3% wet weight liver prior to injection by tail vein of a tracer dose of 3H-gal or 3H-glu. The rats were sacrificed 15-120 min later and liver was prepared by routine techniques for light (LM) and electron microscopic (EM) radioautography (RAG) and biochemical analysis.


Author(s):  
J. P. Benedict ◽  
R. M. Anderson ◽  
S. J. Klepeis

Ion mills equipped with flood guns can perform two important functions in material analysis; they can either remove material or deposit material. The ion mill holder shown in Fig. 1 is used to remove material from the polished surface of a sample for further optical inspection or SEM ( Scanning Electron Microscopy ) analysis. The sample is attached to a pohshing stud type SEM mount and placed in the ion mill holder with the polished surface of the sample pointing straight up, as shown in Fig 2. As the holder is rotating in the ion mill, Argon ions from the flood gun are directed down at the top of the sample. The impact of Argon ions against the surface of the sample causes some of the surface material to leave the sample at a material dependent, nonuniform rate. As a result, the polished surface will begin to develop topography during milling as fast sputtering materials leave behind depressions in the polished surface.


1984 ◽  
Vol 15 (3) ◽  
pp. 154-168 ◽  
Author(s):  
Mary Ann Lively

Developmental Sentence Scoring (DSS) is a useful procedure for quantifying thegrammatic structure of children's expressive language. Like most language analysis techniques, however, DSS requires considerable study and practice to use it correctly and efficiently. Clinicians learning DSS tend to make many scoring errors at first and they display similar confusions and mistakes. This article identifies some of these common "problem" areas and provides scoring examples to assist clinicians in learning the DSS procedure.


Sign in / Sign up

Export Citation Format

Share Document