Breeding Rice Varieties for Abiotic Stress Tolerance: Challenges and Opportunities

Author(s):  
Vishnu V. Nachimuthu ◽  
Robin Sabariappan ◽  
Raveendran Muthurajan ◽  
Arvind Kumar
2019 ◽  
Vol 26 (2) ◽  
pp. 294-300 ◽  
Author(s):  
S. Samara Shekar Reddy ◽  
Bharat Singh ◽  
A. John Peter ◽  
T. Venkateswar Rao

2015 ◽  
Vol 56 (10) ◽  
pp. 1867-1876 ◽  
Author(s):  
Ken-ichi Kurotani ◽  
Kazumasa Yamanaka ◽  
Yosuke Toda ◽  
Daisuke Ogawa ◽  
Maiko Tanaka ◽  
...  

2021 ◽  
Author(s):  
Alif Ali ◽  
Beena R. ◽  
Chennamsetti Lakshmi Naga Manikanta

Abstract Coexistence of two or more abiotic stresses is common in most of the rainfed lowland and upland rice growing areas of India and worldwide. Rice production under these conditions is not sustainable. Identification and development of multiple abiotic stress tolerant rice varieties are to be addressed. Here we tried to identify multiple abiotic stress tolerant varieties from a collection of earlier identified varieties for single stress and validated the known SSR markers for stress tolerance. Twenty rice genotypes were evaluated for individual abiotic stress such as drought, salinity and temperature initially and the tolerant three genotypes in each case were further evaluated for combination of stresses various physio-morphological and biochemical parameters were recorded . Among the genotypes evaluated for combination of stresses, PTB-7 was found to be tolerant for drought and salinity, Nagina-22 was tolerant against temperature and salinity. However, the seeds did not germinate in the presence of all three stresses simultaneously.. Twenty rice varieties viz ., Chomala, MO-16, PTB-35, PTB-60, PTB-39, PTB-55, PTB-30, PTB-7, CRdhan307, Apo, Vyttila-3, Vyttila-4, Vyttila-5, Vyttila-6, Vyttila-7, Vyttila-8, Vyttila-9, Vyttila-10, Nagina-22, and NL-44 were further investigated using microsatellite markers to confirm the genotypic level of tolerance to combination of abiotic stresses. Rice genotypes were screened using 30 reported simple sequence repeat (SSR) markers that are linked to drought, salinity and temperature. Molecular marker analysis of rice genotypes also confirmed that RM8904 and RM1287 were associated with salinity tolerance, RM2612, RM6100 and RM5749 were linked to high temperature tolerant trait. Population analysis also revealed that there is five subpopulation among rice genotypes.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weilong Kong ◽  
Chenhao Zhang ◽  
Shengcheng Zhang ◽  
Yalin Qiang ◽  
Yue Zhang ◽  
...  

AbstractSalinity is a major abiotic stress that limits plant growth and crop productivity. Indica rice and japonica rice show significant differences in tolerance to abiotic stress, and it is considered a feasible method to breed progeny with stronger tolerance to abiotic stress by crossing indica and japonica rice. We herein developed a high-generation recombinant inbred lines (RILs) from Luohui 9 (indica) X RPY geng (japonica). Based on the high-density bin map of this RILs population, salt tolerance QTLs controlling final survival rates were analyzed by linkage mapping and RTM-GWAS methods. A total of seven QTLs were identified on chromosome 3, 4, 5, 6, and 8. qST-3.1, qST-5.1, qST-6.1, and qST-6.2 were novel salt tolerance QTLs in this study and their function were functionally verified by comparative analysis of parental genotype RILs. The gene aggregation result of these four new QTLs emphasized that the combination of the four QTL synergistic genotypes can significantly improve the salt stress tolerance of rice. By comparing the transcriptomes of the root tissues of the parents’ seedlings, at 3 days and 7 days after salt treatment, we then achieved fine mapping of QTLs based on differentially expressed genes (DEGs) identification and DEGs annotations, namely, LOC_Os06g01250 in qST-6.1, LOC_Os06g37300 in qST-6.2, LOC_Os05g14880 in qST-5.1. The homologous genes of these candidate genes were involved in abiotic stress tolerance in different plants. These results indicated that LOC_Os05g14880, LOC_Os06g01250, and LOC_Os06g37300 were the candidate genes of qST-5.1, qST-6.1, and qST-6.2. Our finding provided novel salt tolerance-related QTLs, candidate genes, and several RILs with better tolerance, which will facilitate breeding for improved salt tolerance of rice varieties and promote the exploration tolerance mechanisms of rice salt stress.


PROTEOMICS ◽  
2011 ◽  
Vol 11 (12) ◽  
pp. 2389-2405 ◽  
Author(s):  
Ana P. Farinha ◽  
Sami Irar ◽  
Eliandre de Oliveira ◽  
M. Margarida Oliveira ◽  
Montserrat Pagès

2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

Author(s):  
Rajesh Kumar Singhal ◽  
Hanuman Singh Jatav ◽  
Tariq Aftab ◽  
Saurabh Pandey ◽  
Udit Nandan Mishra ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


2021 ◽  
Vol 22 (13) ◽  
pp. 7235
Author(s):  
Md. Tahjib-Ul-Arif ◽  
Mst. Ishrat Zahan ◽  
Md. Masudul Karim ◽  
Shahin Imran ◽  
Charles T. Hunter ◽  
...  

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


Sign in / Sign up

Export Citation Format

Share Document