Characterization of Liver Cancer Tissues Utilizing the Optical Polarized System

Author(s):  
Thao-Vi Nguyen ◽  
Chi-Bao Bui ◽  
Thi-Thu-Hien Pham
Keyword(s):  
Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3645
Author(s):  
Isabel Theresa Schobert ◽  
Lynn Jeanette Savic

With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Alaaeldin Ahmed Hamza ◽  
Gehan Hussein Heeba ◽  
Hanan Mohamed Elwy ◽  
Chandraprabha Murali ◽  
Raafat El-Awady ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 441-449
Author(s):  
Yixin Mao ◽  
Huayu Yang ◽  
Lejia Sun ◽  
Yilei Mao ◽  
Xianju Qin

Glycobiology ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 989-1002 ◽  
Author(s):  
Alejandro Gómez Toledo ◽  
Jessica Pihl ◽  
Charlotte B Spliid ◽  
Andrea Persson ◽  
Jonas Nilsson ◽  
...  

Abstract Chondroitin sulfate (CS) is the placental receptor for the VAR2CSA malaria protein, expressed at the surface of infected erythrocytes during Plasmodium falciparum infection. Infected cells adhere to syncytiotrophoblasts or get trapped within the intervillous space by binding to a determinant in a 4-O-sulfated CS chains. However, the exact structure of these glycan sequences remains unclear. VAR2CSA-reactive CS is also expressed by tumor cells, making it an attractive target for cancer diagnosis and therapeutics. The identities of the proteoglycans carrying these modifications in placental and cancer tissues remain poorly characterized. This information is clinically relevant since presentation of the glycan chains may be mediated by novel core proteins or by a limited subset of established proteoglycans. To address this question, VAR2CSA-binding proteoglycans were affinity-purified from the human placenta, tumor tissues and cancer cells and analyzed through a specialized glycoproteomics workflow. We show that VAR2CSA-reactive CS chains associate with a heterogenous group of proteoglycans, including novel core proteins. Additionally, this work demonstrates how affinity purification in combination with glycoproteomics analysis can facilitate the characterization of CSPGs with distinct CS epitopes. A similar workflow can be applied to investigate the interaction of CSPGs with other CS binding lectins as well.


2020 ◽  
Vol 25 (3) ◽  
pp. 376-381
Author(s):  
Hideharu Miura ◽  
Shuichi Ozawa ◽  
Hayate Kusaba ◽  
Yoshiko Doi ◽  
Masahiko Kenjo ◽  
...  

2020 ◽  
Vol 35 (3) ◽  
pp. 83-89
Author(s):  
Rong Yan ◽  
Kang Li ◽  
Dawei Yuan ◽  
Haonan Wang ◽  
Wei Chen ◽  
...  

Background: MiR-183-5p plays an important role in the pathophysiology of many tumors, while the role of MiR-183-5p in liver cancer is unclear. Methods: In this study, quantitative reverse transcription-polymerase chain reaction and Western blotting were used to detect the expression of miR-183-5p in liver cancer cell lines, liver cancer tissues, and normal tissues adjacent to the cancer, and to explore the mechanism of miR-183-5p regulating liver cancer progression. The in vitro effects of miR-183-5p were evaluated by CCK-8, colony formation test, and wound healing test. Various databases were used to predict the target mRNA of miR-183-5p and verified by luciferase report analysis. In addition, the effects of miR-183-5p and its target gene on the survival of patients with liver cancer were also analyzed. Results: miR-183-5p was highly expressed in hepatocellular carcinoma cells and tissues, and was related to some clinicopathological features. MiR-183-5p can promote the proliferation and migration of liver cancer cells. Using the bioinformatics database, we proved that miR-183-5p is related to the survival of liver cancer patients. Insulin receptor substrate 1 (IRS1) is a target of miR-183-5p, and luciferase analysis confirmed that miR-183-5p combines with the 3′-untranslated region (3′-UTR) of IRS1. Conclusion: The miR-183-5p/IRS1 axis may be a new target for liver cancer research.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Zhengzhao Li ◽  
Junyu Lu ◽  
Guang Zeng ◽  
Jielong Pang ◽  
Xiaowen Zheng ◽  
...  

Abstract This study was designed to investigate the mechanism by which miR-129-5p affects the biological function of liver cancer cells. The expression levels of miR-129–5p in liver cancer tissues and cells were, respectively, determined. Crystal violet staining and flow cytometry were used to detect cell proliferation and apoptosis. Wound healing assay and transwell assay were performed to test cell migration and invasion. The target gene of miR-129–5p was analyzed and verified by bioinformatics analysis and luciferase reporter assay. Tumorigenicity assays in nude mice were used to test the antitumor ability of calcium calmodulin-dependent protein kinase IV (CAMK4). miR-129–5p was found to be underexpressed in hepatocellular cancer tissues and cells and also to inhibit liver cells proliferation, migration, and invasion and promote apoptosis. CAMK4 was a direct target for miR-129–5p and was lowly expressed in liver cancer tissues and cells. CAMK4 was also found to inhibit liver cells proliferation, migration and invasion, and promote apoptosis. CAMK4 might exert an antitumor effect by inhibiting the activation of mitogen-activated protein kinase (MAPK). MiR-129–5p was a tumor suppressor with low expression in liver cancer tissues and cells. CAMK4, which is a direct target gene of miR-129–5p, could inhibit tumor by inhibiting the activation of MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document