Development of a Low-Cost Groundwater-Level Measuring Device

Author(s):  
Davinder Pal Singh ◽  
A. K. Gosain
2021 ◽  
pp. 54-59
Author(s):  
Md. Mahidy Hossain ◽  
Nadim Khandaker

In every aspect of Engineering more advanced, efficient and progressive solutions are required. The modern age of science requires innovative minds. The field of environmental engineering is also advancing with modern science and technology innovations. Measuring of methane concentration and flow rate is nothing new, yet a complicated process. The need for more accurate measurement is a necessity in proper operation of bio digesters for methane generation. The traditional process of the measuring methane content in biogas is time consuming yet complicated. The need for development and application of methane measurement techniques is not only limited to biogas but has other monitoring value as well in other health and safety applications in built environments. Winsen Electronics and Hanwei Electronics are two of the leading sensor-manufactures of China who are providing a wide range of gas detecting sensors that are locally available in Bangladesh and yet has not been applied to methane content measurement in biogas operations. In This paper we are reporting on the application of a purpose-built propane, butane detector for methane gas detection within the range of accuracy for it to be applied in methane detection in a biogas stream. This paper, reports on application and calibration of the methane detecting sensor MQ-4 with promising result. Based on the study we postulate that the sensor can be used to detect methane for an on-line monitoring of many environmental, industrial purposes such as bio digesters, integrated waste management facility. The cost of fabrication of the sensor system is only $18 making it a viable sensor with respect to cost for application in Bangladesh.


Author(s):  
Titus E. Crisan ◽  
Madalin I. Ardelean ◽  
Bogdan Tebrean ◽  
Tudor Oltean

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Quoc Khanh Duong ◽  
Thanh Trung Trang ◽  
Thanh Long Pham

It is easy to realize that most robots do not move to the desired endpoint (Tool Center Point (TCP)) using high-resolution noncontact instrumentation because of manufacturing and assembly errors, transmission system errors, and mechanical wear. This paper presents a robot calibration solution by changing the endpoint trajectories while maintaining the robot’s control system and device usages. Two independent systems to measure the endpoint positions, the robot encoder and a noncontact measuring system with a high-resolution camera, are used to determine the endpoint errors. A new trajectory based on the measured errors will be built to replace the original trajectory. The results show that the proposed method can significantly reduce errors; moreover, this is a low-cost solution and easy to apply in practice and calibration can be done cyclically. The only requirement for this method is a noncontact measuring device with high-resolution and located independently with the robot in calibration.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 341 ◽  
Author(s):  
Miha Ambrož ◽  
Uroš Hudomalj ◽  
Alexander Marinšek ◽  
Roman Kamnik

Measuring friction between the tyres of a vehicle and the road, often and on as many locations on the road network as possible, can be a valuable tool for ensuring traffic safety. Rather than by using specialised equipment for sequential measurements, this can be achieved by using several low-cost measuring devices on vehicles that travel on the road network as part of their daily assignments. The presented work proves the hypothesis that a low cost measuring device can be built and can provide measurement results comparable to those obtained from expensive specialised measuring devices. As a proof of concept, two copies of a prototype device, based on the Raspberry Pi single-board computer, have been developed, built and tested. They use accelerometers to measure vehicle braking deceleration and include a global positioning receiver for obtaining the geolocation of each test. They run custom-developed data acquisition software on the Linux operating system and provide automatic measurement data transfer to a server. The operation is controlled by an intuitive user interface consisting of two illuminated physical pushbuttons. The results show that for braking tests and friction coefficient measurements the developed prototypes compare favourably to a widely used professional vehicle performance computer.


1975 ◽  
Vol 97 (1) ◽  
pp. 190-195 ◽  
Author(s):  
T. S. Sankar ◽  
M. O. M. Osman

This paper discusses a new approach for describing accurately the typology of manufactured surfaces. The method employs the theory of stochastic excursions to characterize the surface texture in the amplitude and lengthwise directions. The mathematical principle behind the approach is briefly explained, and it is shown that an accurate description of the roughness can be obtained from the knowledge of the intercept probabilities of the crest and valley excursions of the surface texture about any given level, say the CLA value, specified with respect to the mean line. Based on the preceding excursion probability densities, new surface texture parameters are proposed. These parameters may be computed directly from the surface roughness data obtained from commercially available measuring devices. On the basis of this investigation, it is feasible to develop a low-cost measuring device for “on-line” surface evaluation in production. It is also shown that the sampling length provides a geometrically well-defined filter characteristic similar to that of the rolling circle radius in the E-system.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 586 ◽  
Author(s):  
Mario Fuentes-Arreazola ◽  
Jorge Ramírez-Hernández ◽  
Rogelio Vázquez-González

2019 ◽  
Vol 8 (3) ◽  
pp. 2064-2066

In the current paper we have described the design, testing and result data of a low cost heart beat measuring device. The proposed model works on the properties of optics. Our model is non-invasive in nature and able to measure heart rate of any individual during different physical activities. We have also developed a better algorithm for measuring heart beat rate at a fixed interval of 5 seconds. The heart beat is counted by a specific microcontroller that displays the heart rate data on an LCD continuously. We have also measured the heart beat rate of an individual running on the trademill at variable speed and compared the result with our model.


Author(s):  
Zakaryae Ezzouine ◽  
Abdelrhani Nakheli

<p>This article develops also a measure and prototype to allow the acquisition of real time data for display, analysis, control and storage with a proposed test program for determining the model parameters. The aim is to be able to measure, and apply moment to a specimen, and collect data from the resulting deformation in the material. At the same time, the reliability of this test system has been proved by precision analysis and data processing for a simple test validation (metal wire). The force-deformation curves of solids materials in this tensile test are measured accurately in real time, to obtain the values of solid materials mechanical property parameters, The minimal change in length of the test Specimen that can be resolved by this system is 1µm, which yields the sensitivity comprised between 10-4µm and 10-5 µm. Based on the experience that compressive tensile test have the smallest statistical scatter and that they are simplest to carry out. The measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability.</p>


1980 ◽  
Vol 239 (2) ◽  
pp. G128-G132
Author(s):  
Y. J. Kingma ◽  
K. L. Bowes ◽  
M. S. Kocylowski ◽  
J. Szmidt

Strain gauges are often used for the measurement of contractile activity of muscle tissue. In these cases the strain gauge is used as a force measuring device. Because of its stiffness, the strain-gauge-type transducer resists changes in length produced by contraction, and this could cause secondary effects. This paper describes an alternative method to evaluate contractions. Displacement rather than force is measured. The device offers very little resistance to motion and thus does not constrain the tissue. The sensitivity of the transducer is very high. An additional feature is the low cost of the transducer compared to strain-gauge devices.


Sign in / Sign up

Export Citation Format

Share Document