Role of Oxidative Stress in Hyperhomocysteinemia-Induced Heart Diseases

Author(s):  
Nevena Jeremic ◽  
Jovana Bradic ◽  
Anica Petkovic ◽  
Gregory Weber
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
O. Lorenzo ◽  
B. Picatoste ◽  
S. Ares-Carrasco ◽  
E. Ramírez ◽  
J. Egido ◽  
...  

Diabetic cardiomyopathy entails the cardiac injury induced by diabetes independently of any vascular disease or hypertension. Some transcription factors have been proposed to control the gene program involved in the setting and development of related processes. Nuclear factor-kappa B is a pleiotropic transcription factor associated to the regulation of many heart diseases. However, the nuclear factor-kappa B role in diabetic cardiomyopathy is under investigation. In this paper, we review the nuclear factor-kappa B pathway and its role in several processes that have been linked to diabetic cardiomyopathy, such as oxidative stress, inflammation, endothelial dysfunction, fibrosis, hypertrophy and apoptosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Sun ◽  
Caixia Liu ◽  
Qiuhui Chen ◽  
Ning Liu ◽  
Youyou Yan ◽  
...  

Cardiovascular diseases (CVDs) are the leading causes of death worldwide, and defects in mitochondrial function contribute largely to the occurrence of CVDs. Recent studies suggest that sirtuin 3 (SIRT3), the mitochondrial NAD+-dependent deacetylase, may regulate mitochondrial function and biosynthetic pathways such as glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle, oxidative stress, and apoptosis by reversible protein lysine deacetylation. SIRT3 regulates glucose and lipid metabolism and maintains myocardial ATP levels, which protects the heart from metabolic disturbances. SIRT3 can also protect cardiomyocytes from oxidative stress-mediated cell damage and block the development of cardiac hypertrophy. Recent reports show that SIRT3 is involved in the protection of several heart diseases. This review discusses the progress in SIRT3-related research and the role of SIRT3 in the prevention and treatment of CVDs.


2005 ◽  
Vol 173 (4S) ◽  
pp. 214-215 ◽  
Author(s):  
Daniel Cho ◽  
Xiao Fang Ha ◽  
J. Andre Melendez ◽  
Louis J. Giorgi ◽  
Badar M. Mian

2016 ◽  
Vol 86 (3-4) ◽  
pp. 127-151 ◽  
Author(s):  
Zeshan Ali ◽  
Zhenbin Wang ◽  
Rai Muhammad Amir ◽  
Shoaib Younas ◽  
Asif Wali ◽  
...  

While the use of vinegar to fi ght against infections and other crucial conditions dates back to Hippocrates, recent research has found that vinegar consumption has a positive effect on biomarkers for diabetes, cancer, and heart diseases. Different types of vinegar have been used in the world during different time periods. Vinegar is produced by a fermentation process. Foods with a high content of carbohydrates are a good source of vinegar. Review of the results of different studies performed on vinegar components reveals that the daily use of these components has a healthy impact on the physiological and chemical structure of the human body. During the era of Hippocrates, people used vinegar as a medicine to treat wounds, which means that vinegar is one of the ancient foods used as folk medicine. The purpose of the current review paper is to provide a detailed summary of the outcome of previous studies emphasizing the role of vinegar in treatment of different diseases both in acute and chronic conditions, its in vivo mechanism and the active role of different bacteria.


Sign in / Sign up

Export Citation Format

Share Document