Performance of Alkali-Activated Mortar Mixes Containing Industrial Waste Materials as Binders

Author(s):  
B. M. Mithun ◽  
Nitendra Palankar ◽  
Vaibhav Chate
2021 ◽  
Vol 13 (4) ◽  
pp. 2062
Author(s):  
Iman Faridmehr ◽  
Chiara Bedon ◽  
Ghasan Fahim Huseien ◽  
Mehdi Nikoo ◽  
Mohammad Hajmohammadian Baghban

Alkali-activated products composed of industrial waste materials have shown promising environmentally friendly features with appropriate strength and durability. This study explores the mechanical properties and structural morphology of ternary blended alkali-activated mortars composed of industrial waste materials, including fly ash (FA), palm oil fly ash (POFA), waste ceramic powder (WCP), and granulated blast-furnace slag (GBFS). The effect on the mechanical properties of the Al2O3, SiO2, and CaO content of each binder is investigated in 42 engineered alkali-activated mixes (AAMs). The AAMs structural morphology is first explored with the aid of X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy measurements. Furthermore, three different algorithms are used to predict the AAMs mechanical properties. Both an optimized artificial neural network (ANN) combined with a metaheuristic Krill Herd algorithm (KHA-ANN) and an ANN-combined genetic algorithm (GA-ANN) are developed and compared with a multiple linear regression (MLR) model. The structural morphology tests confirm that the high GBFS volume in AAMs results in a high volume of hydration products and significantly improves the final mechanical properties. However, increasing POFA and WCP percentage in AAMs manifests in the rise of unreacted silicate and reduces C-S-H products that negatively affect the observed mechanical properties. Meanwhile, the mechanical features in AAMs with high-volume FA are significantly dependent on the GBFS percentage in the binder mass. It is also shown that the proposed KHA-ANN model offers satisfactory results of mechanical property predictions for AAMs, with higher accuracy than the GA-ANN or MLR methods. The final weight and bias values given by the model suggest that the KHA-ANN method can be efficiently used to design AAMs with targeted mechanical features and desired amounts of waste consumption.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shamsad Ahmad ◽  
Ibrahim Hakeem ◽  
Mohammed Maslehuddin

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.


2017 ◽  
Vol 7 (5) ◽  
pp. 514 ◽  
Author(s):  
Zeynab Emdadi ◽  
Nilofar Asim ◽  
Mohamad Amin ◽  
Mohd Ambar Yarmo ◽  
Ali Maleki ◽  
...  

2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6333
Author(s):  
Virendra Kumar Yadav ◽  
Krishna Kumar Yadav ◽  
Vineet Tirth ◽  
Govindhan Gnanamoorthy ◽  
Nitin Gupta ◽  
...  

Environmental pollution is one of the major concerns throughout the world. The rise of industrialization has increased the generation of waste materials, causing environmental degradation and threat to the health of living beings. To overcome this problem and effectively handle waste materials, proper management skills are required. Waste as a whole is not only waste, but it also holds various valuable materials that can be used again. Such useful materials or elements need to be segregated and recovered using sustainable recovery methods. Agricultural waste, industrial waste, and household waste have the potential to generate different value-added products. More specifically, the industrial waste like fly ash, gypsum waste, and red mud can be used for the recovery of alumina, silica, and zeolites. While agricultural waste like rice husks, sugarcane bagasse, and coconut shells can be used for recovery of silica, calcium, and carbon materials. In addition, domestic waste like incense stick ash and eggshell waste that is rich in calcium can be used for the recovery of calcium-related products. In agricultural, industrial, and domestic sectors, several raw materials are used; therefore, it is of high economic interest to recover valuable minerals and to process them and convert them into merchandisable products. This will not only decrease environmental pollution, it will also provide an environmentally friendly and cost-effective approach for materials synthesis. These value-added materials can be used for medicine, cosmetics, electronics, catalysis, and environmental cleanup.


Sign in / Sign up

Export Citation Format

Share Document