Fused Filament Fabrication (FFF) Based 3D Printer and Its Design: A Review

Author(s):  
Krishnanand ◽  
Mohammad Taufik
2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Hossein Mokhtarian ◽  
Eric Coatanéa ◽  
Henri Paris ◽  
Mouhamadou Mansour Mbow ◽  
Franck Pourroy ◽  
...  

Modeling and simulation for additive manufacturing (AM) is commonly used in industry. Nevertheless, a central issue remaining is the integration of different models focusing on different objectives and targeting different levels of details. The objective of this work is to increase the prediction capability of characteristics and performances of additively manufactured parts and to co-design parts and processes. The paper contributes to this field of research by integrating part's performance model and additive technology process model into a single early integrated model. The paper uses the dimensional analysis conceptual modeling (DACM) framework in an AM perspective to generate causal graphs integrating the AM equipment and the part to be printed. DACM offers the possibility of integrating existing knowledge in the model. The framework supported by a computer tool produces a set of governing equations representing the relationships among the influencing variables of the integrated model. The systematic identification of the weaknesses and contradictions in the system and qualitative simulation of the system are some of the potential uses of the model. Ultimately, it is a way to create better designs of machines and parts, to control and qualify the manufacturing process, and to control three-dimensional (3D) printing processes. The DACM framework is tested on two cases of a 3D printer using the fused filament fabrication (FFF) powder bed fusion. The analysis, applied to the global system formed of the 3D printer and the part, illustrates the existence of contradictions. The analysis supports the early redesign of both parts and AM process (equipment) and later optimization of the control parameters.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7560-7572
Author(s):  
Qianqian Zhu ◽  
Qian Yao ◽  
Jun Liu ◽  
Jianzhong Sun ◽  
Qianqian Wang

The application of Fused Filament Fabrication (FFF) 3D printing for offices, educational institutions, and small prototyping businesses has recently attracted increased attention. Thermal-fused filaments could emit potentially hazardous atmospheric particulate matter (PM) and volatile organic compounds (VOCs). This study evaluated the particle and VOCs emission characteristics of an FFF 3D printer with lignocellulose/polylactic acid (PLA) filament to reduce emissions. The PM2.5, PM0.2-10, and VOCs emission behaviors of the FFF 3D printer with a lignocellulose/PLA filament were investigated in a test chamber under different printing conditions. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was applied to analyze the formation of VOCs from lignocellulose/PLA filaments. Analysis indicated that particle formation dominated the heating process, whereas VOCs were mainly released during the printing process. The results further showed that printing at higher relative humidity and high filament feeding temperatures triggered higher VOCs emissions. In addition, high humidity facilitated particle agglomeration and reduced PM concentration. Printing at higher filament feeding temperatures also resulted in high particle emissions. Finally, Py-GC/MS analysis determined the decomposition products of the lignocellulose/PLA filament corresponding to the main ingredients of VOCs.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Miho Suzuki ◽  
Asahi Yonezawa ◽  
Kohei Takeda ◽  
Akira Yamada

A fused filament fabrication (FFF) 3D printer is a simple device capable of manufacturing three-dimensional structures in a series of easy steps. Commercial-level FFF 3D printers have spread rapidly in many fields in recent years. Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used as a typical printing medium for FFF 3D printers. The FFF printer constructs an object with melted polymer extruded from a tiny scanning nozzle. The mechanical properties of FFF 3D structures printed with different scan patterns can therefore vary in accordance with the directions from which forces act upon them. The nozzle scan pattern also influences the deterioration of the mechanical properties of the structures in accordance with the degradation caused by the hydrolysis of PLA. In this study we conducted tensile tests to evaluate the strength characteristics of 3D printed test pieces formed from PLA using four different scan patterns: parallel, vertical, parallel-and-vertical, and cross-hatched at opposing diagonal angles to the tensile direction. We also formed test pieces by an injection molding method using the same material, for further comparison. We evaluated the deterioration of the test pieces after immersing them in saline for certain periods. After the test pieces formed by different nozzle scan patterns were immersed, they exhibited differences in the rates by which their maximum tensile stresses deteriorated and their masses increased through water uptake. The influences of the scan patterns could be classified into two types: the unidirectional scan pattern influence and bidirectional scan pattern influence. The data obtained in this research will be applied to structural design when the FFF 3D printer is employed for the fabrication of structures with PLA filament.


Author(s):  
Jason R. Nixon ◽  
David I. Bigio

Polymeric fused filament fabrication technology (FFF), a subfield within additive manufacturing (AM), is becoming a contender for the reintroduction of the small-scale manufacturing of customized consumer products to a mass-production dominated world market. However, before this technology can be widely implemented, there remain significant technological hurdles to overcome. One issue that has been addressed at great length in other traditional polymer manufacturing fields is the inclusion of fillers in the component for physical property enhancement or the introduction of entirely new properties to the matrix material. Experiments conducted in this study examined the inclusion of carbon microfibers (CMFs) into the matrix material prior to the printing process, and the effect of different processing parameters on the final filler structure of the composite parts post printing. Prior work on microstructural evolution during extrusion in a 3D printer has been conducted computationally to study the effects of extrusion rate, matrix rheology, and nozzle geometry on fiber orientation [1]. It was found that varying the nozzle geometry generated significantly different microstructures, and that the remainder of the parameters could be varied to fine-tune microstructural characteristics. Findings indicated that, by varying the nozzle geometry from a converging to a diverging conical section, microstructures ranging from axially oriented (with respect to the extrusion direction) to radially oriented are theoretically possible. Current work performed on extruders and FFF platforms indicates that during the extrusion process, fibers tend to align very closely to the axis of extrusion in shear flow (i.e. converging or straight dies). However, in some applications, this may not be the most effective filler structure for property enhancement, so there remains interest in exploring methodologies for fiber rotation during extrusion. For this study, CMFs and acrylonitrile butadiene styrene (ABS) were compounded using a 28mm fully-intermeshing co-rotating twin-screw (CoTSE) extruder. 3D printer feedstock was manufactured in-house. A range of concentrations from 0%wt to 15%wt fabricated and tested. Analysis of the feedstock indicated nearly axial fiber alignment post-manufacture. This feedstock was then used in a Lulzbot TAZ4 printer to manufacture composite tensile testing specimens. Printed composite properties were then identified and compared to neat ABS and bulk composite properties. It was found that using a purely converging die, highly aligned filler structures were produced (with respect to the bead laid by the printer). Using a diverging nozzle, more random filler structures were produced. Improvements in both intra-layer properties were observed using the diverging nozzle geometries to reorient fibers during extrusion. Property improvements were not found to be as high as longitudinal properties for highly aligned filler structures. Using insights gained through these experiments, we are currently working on exploring added functionality for the composites using different types of fillers as well as multi-scale filler combinations.


2021 ◽  
pp. 089270572199753
Author(s):  
Behnam Akhoundi ◽  
Mojtaba Nabipour ◽  
Omid Kordi ◽  
Faramarz Hajami

In this research, an innovative task of printing speed optimization for continuous fiber composites is examined. Employing continuous fibers is a new method to reinforce samples made by fused filament fabrication (FFF) technology. The printing speed is pivotal in the printing process of composites with continuous fibers because of its significant effect on the geometric shape of the samples, especially their corners. In the experimental part of study, continuous glass fiber (CGF) and polylactic acid (PLA) filaments are utilized during optimization as reinforcing phase and matrix, respectively, and are simultaneously fed into the extrusion-based polymer 3D printer to make PLA/CGF composites. Through the optimization, temperature changes of the deposited rasters in the presence and absence of fibers are calculated at the first step, and then the special relationship between the printing speeds and rasters’ temperature changes is determined. Finally, the optimal printing speed is computed based on a hypothesis, which is proved by the results of high-quality printed composites with different geometric shapes.


Author(s):  
Marco Rossoni ◽  
Giorgio Colombo

Abstract This paper presents a preliminary investigation on the workflow that allows to replicate object by using 3D laser scanner and a desktop fused filament fabrication 3D printer. Pitfalls and limitations of those technologies will be pointed out in order to find the bottleneck of the workflow, paying specific attention to what concerns the digital workflow from the acquisition to the generation of the g-code. The findings and conclusions are drawn from a case study that has been carried out using the minimum amount of human intervention, especially during the digital postprocessing of the data. The objects under investigation is a broken car door handle. Firstly, it has been digitalized using a 3D laser scanner properly calibrated and set. The accuracy, precision and resolution of the measurement tool have been recorded and the as-is acquired data has been checked against topological errors. The as-is acquired model has been compared with the original geometry. The 3d polygonal mesh has been prepared for being printed: the material, machine and process parameters have been chosen. A simulation of the deposition process to estimate warps and deviation from the nominal geometry was carried out. Finally, the object has been additively manufactured using a desktop Fused Filament Fabrication machine: the printed object has been again compared with the original geometry.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1870 ◽  
Author(s):  
Vladimir E. Kuznetsov ◽  
Azamat G. Tavitov ◽  
Oleg D. Urzhumtsev ◽  
Mikhail V. Mikhalin ◽  
Alexander I. Moiseev

The current paper investigates the influence of the hardware setup and parameters of a 3D printing process on the resulting sample strength obtained through fused filament fabrication (FFF) technology. Three-point bending was chosen as the strength measure for samples printed with the long side oriented along the Z-axis. A single CAD model was converted into NC-programs through the same slicing software to be run on five different desktop FFF 3D printers with filament of the same brand and color. For all the printers, the same ranges of layer thickness values from 0.1 to 0.3 mm and feed rates from 25 to 75 mm/s were planned to be varied. The first four machines considered in the study were off the shelf devices available on the market, and the fifth was a quick prototype of a desktop machine design based on the analysis of pros and cons of the four machines considered. The results of the study show that the hardware setup of a desktop 3D printer can drastically change the influence of basic technological parameters such as feed rate and layer thickness on the interlayer bonding. This means that many of the conclusions drawn from previous studies connecting the technological parameters of the FFF process with the mechanical performance of parts and samples may only be correct for specific hardware setups.


Sign in / Sign up

Export Citation Format

Share Document