Role of Microbial Communities in Plant–Microbe Interactions, Metabolic Cooperation, and Self-Sufficiency Leading to Sustainable Agriculture

Author(s):  
Junaida Shezmin Zavahir ◽  
Piyumi C. Wijepala ◽  
Gamini Seneviratne
2020 ◽  
Vol 375 (1808) ◽  
pp. 20190594 ◽  
Author(s):  
Samantha S. Fontaine ◽  
Kevin D. Kohl

Host-associated microbial communities have profound impacts on animal physiological function, especially nutrition and metabolism. The hypothesis of ‘symmorphosis’, which posits that the physiological systems of animals are regulated precisely to meet, but not exceed, their imposed functional demands, has been used to understand the integration of physiological systems across levels of biological organization. Although this idea has been criticized, it is recognized as having important heuristic value, even as a null hypothesis, and may, therefore, be a useful tool in understanding how hosts evolve in response to the function of their microbiota. Here, through a hologenomic lens, we discuss how the idea of symmorphosis may be applied to host-microbe interactions. Specifically, we consider scenarios in which host physiology may have evolved to collaborate with the microbiota to perform important functions, and, on the other hand, situations in which services have been completely outsourced to the microbiota, resulting in relaxed selection on host pathways. Following this theoretical discussion, we finally suggest strategies by which these currently speculative ideas may be explicitly tested to further our understanding of host evolution in response to their associated microbial communities. This article is part of the theme issue ‘The role of the microbiome in host evolution’.


Technology united with research and development has evolved as a grave differentiator of the agriculture sector in India including production, processing, and agriculture packing and marketing of given crops. Near about 50 percent of the Indian workforce was engaged in the agriculture sector but its share in GDP was only 14 percent, much lower in comparison to former. Though, certain agriculture items showed a steady annual increase in terms of kilograms per hectare. Agriculture transformed significantly over the past few decades but when it comes to investment in research and development there is a lot more which needs to be done. The paper analyzes the role of various research and development institutions in boosting the growth of the agriculture sector that helps in attaining sustainable agriculture development and self-sufficiency in the production process since independence. It also focusesed on the various issues faced by these development institutions. The findings unveiled that since independence a lot more was done to boost the research and development in the agriculture sector at both the center and state levels but a proper implementation of these policies along with transparency could bring more desirable outcomes than were gained at present.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Julia Moor ◽  
Tsering Wüthrich ◽  
Suzanne Aebi ◽  
Nadezda Mostacci ◽  
Gudrun Overesch ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannes Petruschke ◽  
Christian Schori ◽  
Sebastian Canzler ◽  
Sarah Riesbeck ◽  
Anja Poehlein ◽  
...  

Abstract Background The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes, modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome annotations, and little is known about their structure and function in individual microbes and especially in microbial communities. Results We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data. Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein expression in each single strain versus a multi-species community cultivation showed that six of these sProteins were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function. Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes relevant for the community metabolism within SIHUMIx. Conclusions We outline an integrated experimental and bioinformatics workflow for the discovery of novel sProteins in a simplified intestinal model system that can be generically applied to other microbial communities. The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the human intestinal tract.


2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Rafael Vicuña ◽  
Bernardo González

Abstract Background In this article we would like to touch on the key role played by the microbiota in the maintenance of a sustainable environment in the entire planet. For obvious reasons, this article does not intend to review thoroughly this extremely complex topic, but rather to focus on the main threats that this natural scenario is presently facing. Methods Recent literature survey. Results Despite the relevance of microorganisms have in our planet, the effects of climate change on microbial communities have been scarcely and not systematically addressed in literature. Although the role of microorganisms in emissions of greenhouse gases has received some attention, there are several microbial processes that are affected by climate change with consequences that are presently under assessment. Among them, host-pathogen interactions, the microbiome of built environment, or relations among plants and beneficial microbes. Conclusions Further research is required to advance in knowledge of the effect of climate change on microbial communities. One of the main targets should be a complete evaluation of the global microbial functional diversity and the design of new strategies to cope with limitations in methods to grow microorganisms in the laboratory. These efforts should contribute to raise a general public awareness on the major role played by the microbiota on the various Earth ecosystems.


Sign in / Sign up

Export Citation Format

Share Document