Role of microbial communities on organic removal during petrochemical wastewater biological treatment with pure oxygen aeration

2021 ◽  
Vol 42 ◽  
pp. 102151
Author(s):  
Dong Wang ◽  
Dongxu Sun ◽  
Xiao Tian ◽  
Nannan Liu ◽  
Chenchen Wang ◽  
...  
CONVERTER ◽  
2021 ◽  
pp. 868-872
Author(s):  
Yong Chen, Yue Jiao, Xiao Li Wen

In this paper, the biodegradation of organic compounds in refinery wastewater was studied. Different microbial communities suitable for the treatment of refinery wastewater were selected to degrade the pretreated wastewater. The results showed that the degradation efficiency of COD and ammonia nitrogen was 59.4% and 56.7% respectively; the degradation efficiency of COD and ammonia nitrogen was 50.2% and 60.6% respectively. It can be used as the dominant bacteria for further domestication and cultivation of petrochemical wastewater biological treatment.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Julia Moor ◽  
Tsering Wüthrich ◽  
Suzanne Aebi ◽  
Nadezda Mostacci ◽  
Gudrun Overesch ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannes Petruschke ◽  
Christian Schori ◽  
Sebastian Canzler ◽  
Sarah Riesbeck ◽  
Anja Poehlein ◽  
...  

Abstract Background The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes, modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome annotations, and little is known about their structure and function in individual microbes and especially in microbial communities. Results We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data. Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein expression in each single strain versus a multi-species community cultivation showed that six of these sProteins were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function. Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes relevant for the community metabolism within SIHUMIx. Conclusions We outline an integrated experimental and bioinformatics workflow for the discovery of novel sProteins in a simplified intestinal model system that can be generically applied to other microbial communities. The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the human intestinal tract.


2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Rafael Vicuña ◽  
Bernardo González

Abstract Background In this article we would like to touch on the key role played by the microbiota in the maintenance of a sustainable environment in the entire planet. For obvious reasons, this article does not intend to review thoroughly this extremely complex topic, but rather to focus on the main threats that this natural scenario is presently facing. Methods Recent literature survey. Results Despite the relevance of microorganisms have in our planet, the effects of climate change on microbial communities have been scarcely and not systematically addressed in literature. Although the role of microorganisms in emissions of greenhouse gases has received some attention, there are several microbial processes that are affected by climate change with consequences that are presently under assessment. Among them, host-pathogen interactions, the microbiome of built environment, or relations among plants and beneficial microbes. Conclusions Further research is required to advance in knowledge of the effect of climate change on microbial communities. One of the main targets should be a complete evaluation of the global microbial functional diversity and the design of new strategies to cope with limitations in methods to grow microorganisms in the laboratory. These efforts should contribute to raise a general public awareness on the major role played by the microbiota on the various Earth ecosystems.


2015 ◽  
Vol 12 (3) ◽  
pp. 445-452
Author(s):  
Baghdad Science Journal

The role of filamentous bacteria represented by Streptomycessp was studied as biological treatment for activated sludge AL- Restomia treatment unit in Baghdad city. The result shows reducing in phosphate concentration where apprise in started entrance the treatment unit 12.083 mg/L fast the unit stages reached to 8.426 mg /L where nitrate concentration apprises 3.59 mg/l and ending in 2.43 mg/L The concentration of ammonia apprises 1358 mg/L and reached to 140 mg/L. also the TDS concentration reduced from 1426 to 1203 mg/L where nutrient which represented (SO4, Mg, Ca, Na, K) reduced by range 30.883- 23.337 , 194- 121 , 440- 321 , 109.03- 101.53 and 16.85- 15.4mg/L respectively COD reduce from427.263- 82mg/L with absorbance0.018- 0.027 nm.


2020 ◽  
Author(s):  
Qing-Lin Chen ◽  
Hang-Wei Hu ◽  
Zhen-Zhen Yan ◽  
Chao-Yu Li ◽  
Bao-Anh Thi Nguyen ◽  
...  

Abstract Background: Termites are ubiquitous insects in tropical and subtropical habitats, where they construct massive mounds from soil, their saliva and excreta. Termite mounds harbor an enormous amount of microbial inhabitants, which regulate multiple ecosystem functions such as mitigating methane emissions and increasing ecosystem resistance to climate change. However, we lack a mechanistic understanding about the role of termite mounds in modulating the microbial community assembly processes, which are essential to unravel the biological interactions of soil fauna and microorganisms, the major components of soil food webs. We conducted a large-scale survey across a >1500 km transect in northern Australia to investigate biogeographical patterns of bacterial and fungal community in 134 termite mounds and the relative importance of deterministic versus stochastic processes in microbial community assembly. Results: Microbial alpha (number of phylotypes) and beta (changes in bacterial and fungal community composition) significantly differed between termite mounds and surrounding soils. Microbial communities in termite mounds exhibited a significant distance-decay pattern, and fungal communities had a stronger distance-decay relationship (slope = -1.91) than bacteria (slope = -0.21). Based on the neutral community model (fitness < 0.7) and normalized stochasticity ratio index (NST) with a value below the 50% boundary point, deterministic selection, rather than stochastic forces, predominated the microbial community assembly in termite mounds. Deterministic processes exhibited significantly weaker impacts on bacteria (NST = 45.23%) than on fungi (NST = 33.72%), probably due to the wider habitat niche breadth and higher potential migration rate of bacteria. The abundance of antibiotic resistance genes (ARGs) was negatively correlated with bacterial/fungal biomass ratios, indicating that ARG content might be an important biotic factor that drove the biogeographic pattern of microbial communities in termite mounds. Conclusions: Deterministic processes play a more important role than stochastic processes in shaping the microbial community assembly in termite mounds, an unique habitat ubiquitously distributed in tropical and subtropical ecosystems. An improved understanding of the biogeographic patterns of microorganisms in termite mounds is crucial to decipher the role of soil faunal activities in shaping microbial community assembly, with implications for their mediated ecosystems functions and services.


2019 ◽  
Vol 23 (1) ◽  
pp. 52-63 ◽  
Author(s):  
Elina Strade ◽  
Daina Kalnina

Abstract Pharmaceutical wastewater biological treatment plants are stressed with multi-component wastewater and unexpected variations in wastewater flow, composition and toxicity. To avoid operational problems and reduced wastewater treatment efficiency, accurate monitoring of influent toxicity on activated sludge microorganisms is essential. This paper outlines how to predict highly toxic streams, which should be avoided, using measurements of biochemical oxygen demand (BOD), if they are made in a wide range of initial concentration. The results indicated that wastewater containing multivalent Al3+ cations showed a strong toxic effect on activated sludge biocenosis irrespectively of dilutions, while toxicity of phenol and formaldehyde containing wastewater decreased considerably with increasing dilution. Activated sludge microorganisms were not sensitive to wastewater containing halogenated sodium salts (NaCl, NaF) and showed high treatment capacity of saline wastewater. Our findings confirm that combined indicators of contamination, such as chemical oxygen demand (COD), alone do not allow evaluating potential toxic influence of wastewater. Obtained results allow identifying key inhibitory substances in pharmaceutical wastewater and evaluating potential impact of new wastewater streams or increased loading on biological treatment system. Proposed method is sensitive and cost effective and has potential for practical implementation in multiproduct pharmaceutical wastewater biological treatment plants.


2020 ◽  
Vol 375 (1808) ◽  
pp. 20190594 ◽  
Author(s):  
Samantha S. Fontaine ◽  
Kevin D. Kohl

Host-associated microbial communities have profound impacts on animal physiological function, especially nutrition and metabolism. The hypothesis of ‘symmorphosis’, which posits that the physiological systems of animals are regulated precisely to meet, but not exceed, their imposed functional demands, has been used to understand the integration of physiological systems across levels of biological organization. Although this idea has been criticized, it is recognized as having important heuristic value, even as a null hypothesis, and may, therefore, be a useful tool in understanding how hosts evolve in response to the function of their microbiota. Here, through a hologenomic lens, we discuss how the idea of symmorphosis may be applied to host-microbe interactions. Specifically, we consider scenarios in which host physiology may have evolved to collaborate with the microbiota to perform important functions, and, on the other hand, situations in which services have been completely outsourced to the microbiota, resulting in relaxed selection on host pathways. Following this theoretical discussion, we finally suggest strategies by which these currently speculative ideas may be explicitly tested to further our understanding of host evolution in response to their associated microbial communities. This article is part of the theme issue ‘The role of the microbiome in host evolution’.


Sign in / Sign up

Export Citation Format

Share Document