Effect of Anthropogenic and Natural Activities on a Rock Slope Failure Using Rate, State, Temperature and Pore Pressure Friction

Author(s):  
Nitish Sinha ◽  
Arun K. Singh ◽  
Avinash D. Vasudeo
2015 ◽  
Vol 744-746 ◽  
pp. 690-694
Author(s):  
Muhammad Rehan Hakro ◽  
Indra Sati Hamonangan Harahap

Rainfall-induced landslides occur in many parts of the world and causing a lot of the damages. For effective prediction of rainfall-induced landslides the comprehensive understanding of the failure process is necessary. Under different soil and hydrological conditions experiments were conducted to investigate and clarify the mechanism of slope failure. The failure in model slope was induced by sprinkling the rainfall on slope composed of sandy soil in small flume. Series of tests were conducted in small scale flume to better understand the failure process in sandy slopes. The moisture content was measured with advanced Imko TDR (Time Domain Reflectrometry) moisture sensors in addition to measurements of pore pressure with piezometers. The moisture content increase rapidly to reach the maximum possible water content in case of higher intensity of rainfall, and higher intensity of the rainfall causes higher erosion as compared to smaller intensity of the rainfall. The controlling factor for rainfall-induced flowslides was density of the slope, rather than intensity of the rainfall and during the flowslide the sudden increase in pore pressure was observed. Higher pore pressure was observed at the toe of the slope as compared to upper part of the slope.


2018 ◽  
Vol 12 (10) ◽  
pp. 3333-3353 ◽  
Author(s):  
Philipp Mamot ◽  
Samuel Weber ◽  
Tanja Schröder ◽  
Michael Krautblatter

Abstract. Instability and failure of high mountain rock slopes have significantly increased since the 1990s coincident with climatic warming and are expected to rise further. Most of the observed failures in permafrost-affected rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. The failure of ice-filled rock joints has only been observed in a small number of experiments, often using concrete as a rock analogue. Here, we present a systematic study of the brittle shear failure of ice and rock–ice interfaces, simulating the accelerating phase of rock slope failure. For this, we performed 141 shearing experiments with rock–ice–rock “sandwich”' samples at constant strain rates (10−3 s−1) provoking ice fracturing, under normal stress conditions ranging from 100 to 800 kPa, representing 4–30 m of rock overburden, and at temperatures from −10 to −0.5 ∘C, typical for recent observed rock slope failures in alpine permafrost. To create close to natural but reproducible conditions, limestone sample surfaces were ground to international rock mechanical standard roughness. Acoustic emission (AE) was successfully applied to describe the fracturing behaviour, anticipating rock–ice failure as all failures are predated by an AE hit increase with peaks immediately prior to failure. We demonstrate that both the warming and unloading (i.e. reduced overburden) of ice-filled rock joints lead to a significant drop in shear resistance. With a temperature increase from −10 to −0.5 ∘C, the shear stress at failure reduces by 64 %–78 % for normal stresses of 100–400 kPa. At a given temperature, the shear resistance of rock–ice interfaces decreases with decreasing normal stress. This can lead to a self-enforced rock slope failure propagation: as soon as a first slab has detached, further slabs become unstable through progressive thermal propagation and possibly even faster by unloading. Here, we introduce a new Mohr–Coulomb failure criterion for ice-filled rock joints that is valid for joint surfaces, which we assume similar for all rock types, and which applies to temperatures from −8 to −0.5 ∘C and normal stresses from 100 to 400 kPa. It contains temperature-dependent friction and cohesion, which decrease by 12 % ∘C−1 and 10 % ∘C−1 respectively due to warming and it applies to temperature and stress conditions of more than 90 % of the recently documented accelerating failure phases in permafrost rock walls.


2021 ◽  
Vol 56 (5) ◽  
pp. 340-350
Author(s):  
Ngoc Binh Vu ◽  
Truong Thanh Phi ◽  
Thanh Cong Nguyen ◽  
Hong Thinh Phi ◽  
Quy Nhan Pham ◽  
...  

The research aimed to study 24 rock slope surfaces along the road around Hon Lon Island, Kien Hai district, Kien Giang province, Vietnam. The analytical results have determined slope failure, wedge failure, and toppling, which occurred on almost slope surface and the average percentage of plane failure is the largest. The average percent of plane failure is 19.23%, the wedge failure is 15.35%, and the toppling fault is 6.73%. Besides, the analytical results have also identified the slope surfaces which can be the key blocks: ND-13, 18, 23, 25, 34, 37, 45, 51, 62, 63. The other analytical results show that the existence of key blocks at the rock slope surfaces in the N-S direction, dip to E at the survey locations: ND-13, 23, 63 and dip to W at the survey locations: ND-37, 45; in the NE-SW direction, dip to SE at the survey locations: ND-15, 62 and dip to NW at the survey locations: ND-18, 34; in the NW-SE direction, dip to SW at the survey location ND-51. These results have important significance to support for protecting slope surface safety.


2021 ◽  
Author(s):  
Philipp Marr ◽  
Stefan Winkler ◽  
Svein Olaf Dahl ◽  
Jörg Löffler

<p>Periglacial, paraglacial and related boulder-dominated landforms constitute a valuable, but often unexplored source of palaeoclimatic and morphodynamic information. The timing of landform formation and stabilization can be linked to past cold climatic conditions which offers the possibility to reconstruct cold climatic periods. In this study, Schmidt-hammer exposure-age dating (SHD) was applied to a variety of boulder-dominated landforms (sorted stripes, blockfield, paraglacial alluvial fan, rock-slope failure) in Rondane, eastern South Norway for the first time. On the basis of an old and young control point a local calibration curve was established from which surface exposure ages of each landform were calculated. The investigation of formation, stabilization and age of the respective landforms permitted an assessment of Holocene climate variability in Rondane and its connectivity to landform evolution. The obtained SHD age estimates range from 11.15 ± 1.22 to 3.99 ± 1.52 ka which shows their general inactive and relict character. Most surface exposure ages of the sorted stripes cluster between 9.62 ± 1.36 and 9.01 ± 1.21 ka and appear to have stabilized towards the end of the ‘Erdalen Event’ or in the following warm period prior to ‘Finse Event’. The blockfield age with 8.40 ± 1.16 ka indicates landform stabilization during ‘Finse Event’, around the onset of the Holocene Thermal Maximum (~8.0–5.0 ka). The paraglacial alluvial fan with its four subsites shows age ranges from 8.51 ± 1.63 to 3.99 ± 1.52 ka. The old exposure age points to fan aggradation follow regional deglaciation due to paraglacial processes, whereas the younger ages can be explained by increasing precipitation during the onset neoglaciation at ~4.0 ka. Surface exposure age of the rock-slope failure with 7.39 ± 0.74 ka falls into a transitional climate period towards the Holocene Thermal Maximum (~8.0–5.0 ka). This indicates that climate-driven factors such as decreasing permafrost depth and/or increasing hydrological pressure negatively influence slope stability. Our obtained first surface exposure ages from boulder-dominated landforms in Rondane give important insights to better understand the palaeoclimatic variability in the Holocene.</p>


2009 ◽  
Vol 9 (3) ◽  
pp. 687-698 ◽  
Author(s):  
A. Günther ◽  
C. Thiel

Abstract. In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.


2020 ◽  
Vol 10 (5) ◽  
pp. 1577
Author(s):  
Zheng-jun Hou ◽  
Bao-quan Yang ◽  
Lin Zhang ◽  
Yuan Chen ◽  
Geng-xin Yang

In the construction of high dams, many high rock slope failures occur due to flood discharge atomized rain. Based on the steel frame lifting technique and strength reduction materials, a comprehensive method is proposed in this paper to study the stability of high bedding rock slope subjected to atomized rain. The safety factor expression of the comprehensive method and the evaluation method for deformation instability were established according to the similarity theory of geomechanical model, failure criterion, and mutation theory. Strength reduction materials were developed to simulate the strength reduction of structural planes caused by rainfall infiltration. A typical test was carried out on the high bedding rock slope in the Baihetan Hydropower Station. The results showed that the failure modes of the bedding rock slope were of two types: sliding–fracturing and fracturing–sliding. The first slip block at the exposed place of the structural plane was sliding–fracturing. Other succeeding slip blocks were mainly of the fracturing–sliding type due to the blocking effect of the first slip block. The failure sequence of the slip blocks along the structural planes was graded into multiple levels. The slip blocks along the upper structural planes were formed first. Concrete plugs had effective reinforcement to improve the shear resistance of the structural planes and inhibit rock dislocation. Finite element method (FEM) simulation was also performed to simulate the whole process of slope failure. The FEM simulation results agreed well with the test results. This research provides an improved understanding of the physical behavior and the failure modes of high bedding rock slopes subjected to atomized rain.


1995 ◽  
Vol 111 (11) ◽  
pp. 761-766 ◽  
Author(s):  
Katsuhiko KANEKO ◽  
Yoshifumi NOGUCHI ◽  
Makoto KOGA ◽  
Takeshi HIRAYAMA

2020 ◽  
Vol 13 (6) ◽  
pp. 597-603
Author(s):  
Johannes Leinauer ◽  
Benjamin Jacobs ◽  
Michael Krautblatter
Keyword(s):  

2008 ◽  
Vol 45 (4) ◽  
pp. 484-510 ◽  
Author(s):  
Erik Eberhardt

The underlying complexity associated with deep-seated rock slope stability problems usually restricts their treatment to phenomenological studies that are largely descriptive and qualitative. Quantitative assessments, when employed, typically focus on assessing the stability state but ignore factors related to the slope’s temporal evolution including rock mass strength degradation, internal shearing, and progressive failure, all of which are key processes contributing to the final collapse of the slope. Reliance on displacement monitoring for early warning and the difficulty in interpreting the data without a clear understanding of the underlying mechanisms has led to a situation where predictions are highly variable and generally unreliable. This paper reviews current knowledge regarding prefailure mechanisms of massive rock slopes and current practices used to assess the hazard posed. Advanced numerical modelling results are presented that focus on the importance of stress- and strain-controlled rock mass strength degradation leading to failure initiation. Efforts to address issues related to parameter and model uncertainty are discussed in the context of a high alpine research facility, the “Randa In Situ Rockslide Laboratory”, where state-of-the-art instrumentation systems and numerical modelling are being used to better understand the mechanisms controlling prefailure deformations over time and their evolution leading to catastrophic failure.


Sign in / Sign up

Export Citation Format

Share Document