Gallium Oxide-Based IMPATT Sources for THz Applications

2021 ◽  
pp. 79-85
Author(s):  
S. J. Mukhopadhyay ◽  
S. Kanungo ◽  
Aritra Acharyya ◽  
M. Mitra
2016 ◽  
Vol 136 (4) ◽  
pp. 479-483
Author(s):  
Masataka Higashiwaki ◽  
Kohei Sasaki ◽  
Hisashi Murakami ◽  
Yoshinao Kumagai ◽  
Akito Kuramata

2019 ◽  
Vol 1410 ◽  
pp. 012233 ◽  
Author(s):  
R V Tominov ◽  
N A Polupanov ◽  
V I Avilov ◽  
M S Solodovnik ◽  
N V Parshina ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Chang Lu ◽  
Qingjian Lu ◽  
Min Gao ◽  
Yuan Lin

The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.


2021 ◽  
Vol 129 (8) ◽  
pp. 085301
Author(s):  
Robert H. Montgomery ◽  
Yuewei Zhang ◽  
Chao Yuan ◽  
Samuel Kim ◽  
Jingjing Shi ◽  
...  

2021 ◽  
Vol 133 ◽  
pp. 105939
Author(s):  
Pengcheng Gao ◽  
Baimei Tan ◽  
Fan Yang ◽  
Hui Li ◽  
Na Bian ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Sign in / Sign up

Export Citation Format

Share Document