Natural Polymers in Pharmaceutical Nanotechnology

Author(s):  
G. Leyva-Gómez ◽  
N. Mendoza-Muñoz ◽  
M. L. Del Prado-Audelo ◽  
S. A. Ojeda-Piedra ◽  
M. L. Zambrano-Zaragoza ◽  
...  
2019 ◽  
Vol 16 (1) ◽  
pp. 67-75
Author(s):  
V.A. Kabak ◽  
G.G. Belozerskaya ◽  
A.P. Momot ◽  
D.Yu. Bychichko ◽  
A.R. Lempert ◽  
...  

2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Sharma Pankaj ◽  
Tailang Mukul

The aim of present work was to prepare colon specific delivery system of Ornidazole using different ratio of shellac, zein and guar gum. From study of various literature it revealed that shellac, zein and guar gum released drug from dosage form at the pH of 6.9, 11.5, 7-9 respectively. The main problem associated with colon targeted drug delivery system is degradation of drug in the acidic environment of stomach to circumvent the present problem different combinations of shellac, zein and guar gum were employed in the formulation of colon targeted tablet. Several preformulation parameters were determined such as melting point, FTIR spectroscopy, preparation of calibration curve, determination of λmax and partition coefficient. After the preformulation studies, next steps were preparation of core tablets, evaluation of core of tablets and coating of tablets. The data obtained from preformulation study seven formulations were developed and evaluated for various parameters. Based on evaluated parameter such as weight variation, friability, dissolution study, invitro drug release etc. the F7 formulation show better results colon targeted tablets. Drug content in F7 formulation was 95% and drug release after 6 hrs was 96%. Formulation containing combination of shellac, zein and guar gum released least amount of drug in the acidic environment of stomach and released most of the drug in colon. It is evide


2019 ◽  
Vol 9 (01) ◽  
pp. 27-33
Author(s):  
Naveen Kumar ◽  
Sonia Pahuja ◽  
Ranjit Sharma

Humans have taken advantage of the adaptability of polymers for centuries in the form of resins, gums tars, and oils. However, it was not until the industrial revolution that the modern polymer industry began to develop. Polymers represent an important constituent of pharmaceutical dosage forms. Polymers have played vital roles in the formulation of pharmaceutical products. Polymers have been used as a major tool to manage the drug release rate from the formulations. Synthetic and natural-based polymers have found their way into the biomedical and pharmaceutical industries. Synthetic and Natural polymers can be produced with a broad range of strength, heat resistance, density, stiffness and even price. By constant research into the science and applications of polymers, they are playing an ever-increasing role in society. Diverse applications of polymers in the present pharmaceutical field are for controlled drug release. Based on solubility pharmaceutical polymers can be classified as water-soluble and water-insoluble. In general, the desirable polymer properties in pharmaceutical applications are film forming, adhesion, gelling, thickening, pH-dependent solubility and taste masking. General pharmaceutical applications of polymers in various pharmaceutical formulations are also discussed


2018 ◽  
Vol 3 (2) ◽  
pp. 38-42 ◽  
Author(s):  
Ashish Garg ◽  
Sweta Garg ◽  
Manish Kumar ◽  
Suresh Kumar ◽  
Ajay Kumar Shukla ◽  
...  

Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Author(s):  
Sally Sabra ◽  
Mona Abdelmoneem ◽  
Mahmoud Abdelwakil ◽  
Moustafa Taha Mabrouk ◽  
Doaa Anwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document