Human Factor Engineering in Oil and Gas Construction Works – A Case Study to Mitigate Safety Risk

Author(s):  
Mat Saaud Nor Arinee ◽  
Othman Idris ◽  
Ir Baharuddin A. Rahim
2009 ◽  
pp. 132-136
Author(s):  
Akash Kumar Bhoi ◽  
Kshyudha Sagar Choudhury

Making India to a global healthcare hub, it is not only about bringing new technology but also we have to take care of the existing technology. The healthcare hub is the leading factor for current economic growth of India. Human Factor Engineering (HFE) plays a vital role in this field. In medical or healthcare, the field is named as Medical Human Factor Engineering (MHFE). This paper discusses on how MHFE responsible for strengthen the Technology Management of Hospital, Hazards from device failure and use related, Human Factors consideration in medical device use and case study on (Infusion Pumps) errors committed by users in each clinical area. Now the challenging issue for HFE is to design a proper workspace to avoid human errors and the four workspace design principles of Sanders & McCormick (1993) is also discussed. This paper deals with the Computer-aided-design (CAD) systems and a failure mode and effects analysis (FMEA) technique with Simple Organizational Structure of HFE in designing the workspace.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Sarmistha R. Majumdar

Fracking has helped to usher in an era of energy abundance in the United States. This advanced drilling procedure has helped the nation to attain the status of the largest producer of crude oil and natural gas in the world, but some of its negative externalities, such as human-induced seismicity, can no longer be ignored. The occurrence of earthquakes in communities located at proximity to disposal wells with no prior history of seismicity has shocked residents and have caused damages to properties. It has evoked individuals’ resentment against the practice of injection of fracking’s wastewater under pressure into underground disposal wells. Though the oil and gas companies have denied the existence of a link between such a practice and earthquakes and the local and state governments have delayed their responses to the unforeseen seismic events, the issue has gained in prominence among researchers, affected community residents, and the media. This case study has offered a glimpse into the varied responses of stakeholders to human-induced seismicity in a small city in the state of Texas. It is evident from this case study that although individuals’ complaints and protests from a small community may not be successful in bringing about statewide changes in regulatory policies on disposal of fracking’s wastewater, they can add to the public pressure on the state government to do something to address the problem in a state that supports fracking.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

This case study analyzes the potential impacts of weakening the National Park Service’s (NPS) “9B Regulations” enacted in 1978, which established a federal regulatory framework governing hydrocarbon rights and extraction to protect natural resources within the parks. We focus on potential risks to national parklands resulting from Executive Orders 13771—Reducing Regulation and Controlling Regulatory Costs [1]—and 13783—Promoting Energy Independence and Economic Growth [2]—and subsequent recent revisions and further deregulation. To establish context, we briefly overview the history of the United States NPS and other relevant federal agencies’ roles and responsibilities in protecting federal lands that have been set aside due to their value as areas of natural beauty or historical or cultural significance [3]. We present a case study of Theodore Roosevelt National Park (TRNP) situated within the Bakken Shale Formation—a lucrative region of oil and gas deposits—to examine potential impacts if areas of TRNP, particularly areas designated as “wilderness,” are opened to resource extraction, or if the development in other areas of the Bakken near or adjacent to the park’s boundaries expands [4]. We have chosen TRNP because of its biodiversity and rich environmental resources and location in the hydrocarbon-rich Bakken Shale. We discuss where federal agencies’ responsibility for the protection of these lands for future generations and their responsibility for oversight of mineral and petroleum resources development by private contractors have the potential for conflict.


2017 ◽  
Vol 3 (2) ◽  
pp. 177
Author(s):  
Nur Huzeima Mohd Hussain ◽  
Hugh Byrd ◽  
Nur Azfahani Ahmad

Globalisation combined with resources of oil and gas has led to an industrial society in Malaysia.  For the past 30 years, rapid urban growth has shifted from 73% rural to 73% urban population. However, the peak oil crisis and economic issues are threatening the growth of urbanisation and influencing the trends of population mobility. This paper documents the beginnings of a reverse migration (urban-to-rural) in Malaysia.  The method adopted case study that involves questionnaires with the urban migrants to establish the desires, definite intentions and reasons for future migration. Based on this data, it predicts a trend and rate of reverse migration in Malaysia. 


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Amir Farmahini Farahani ◽  
Kaveh Khalili-Damghani ◽  
Hosein Didehkhani ◽  
Amir Homayoun Sarfaraz ◽  
Mehdi Hajirezaie

2021 ◽  
Vol 13 (6) ◽  
pp. 3571
Author(s):  
Bogusz Wiśnicki ◽  
Dorota Dybkowska-Stefek ◽  
Justyna Relisko-Rybak ◽  
Łukasz Kolanda

The paper responds to research problems related to the implementation of large-scale investment projects in waterways in Europe. As part of design and construction works, it is necessary to indicate river ports that play a major role within the European transport network as intermodal nodes. This entails a number of challenges, the cardinal one being the optimal selection of port locations, taking into account the new transport, economic, and geopolitical situation that will be brought about by modernized waterways. The aim of the paper was to present an original methodology for determining port locations for modernized waterways based on non-cost criteria, as an extended multicriteria decision-making method (MCDM) and employing GIS (Geographic Information System)-based tools for spatial analysis. The methodology was designed to be applicable to the varying conditions of a river’s hydroengineering structures (free-flowing river, canalized river, and canals) and adjustable to the requirements posed by intermodal supply chains. The method was applied to study the Odra River Waterway, which allowed the formulation of recommendations regarding the application of the method in the case of different river sections at every stage of the research process.


Author(s):  
Ellen Taylor ◽  
Sue Hignett

Thinking in patient safety has evolved over time from more simplistic accident causation models to more robust frameworks of work system design. Throughout this evolution, less consideration has been given to the role of the built environment in supporting safety. The aim of this paper is to theoretically explore how we think about harm as a systems problem by mitigating the risk of adverse events through proactive healthcare facility design. We review the evolution of thinking in safety as a safety science. Using falls as a case study topic, we use a previously published model (SCOPE: Safety as Complexity of the Organization, People, and Environment) to develop an expanded framework. The resulting theoretical model and matrix, DEEP SCOPE (DEsigning with Ergonomic Principles), provide a way to synthesize design interventions into a systems-based model for healthcare facility design using human factors/ergonomics (HF/E) design principles. The DEEP SCOPE matrix is proposed to highlight the design of safe healthcare facilities as an ergonomic problem of design that fits the environment to the user by understanding built environments that support the “human” factor.


2020 ◽  
pp. 875697282097722
Author(s):  
Denise Chenger ◽  
Jaana Woiceshyn

The front end of projects is strategically important; yet, how project concepts are identified, evaluated, and selected at the pre-project stage is poorly understood. This article reports on an inductive multiple-case study of how executives made such decisions in major upstream oil and gas projects. The findings show that in such a high-risk context, often an experienced executive makes these decisions alone and he creates value by facilitating growth. We identified three value-creating decision processes that varied by the executives’ risk approach and decision context. These processes depart from the formal project management prescriptions and the strategic decision-making literature.


2020 ◽  
Vol 13 (2) ◽  
pp. 321
Author(s):  
Mildrend Montoya-Reyes ◽  
Alvaro González-Angeles ◽  
Ismael Mendoza-Muñoz ◽  
Margarita Gil-Samaniego-Ramos ◽  
Juan Ling-López

Purpose: The purpose of this work is to present a method based on the application of method engineering, in order to eliminate downtime and improve the manufacturing cell.Design/methodology/approach: The research strategy employed was a case study applied to a manufacturing company to explore the causes of excessive dead time and low productivity. The methodology used was divided in five steps. The first corresponds to the analysis of the lathe and grinding process; the second is the elaboration of the man-machine diagram to identify dead times; the third is the application of the improvement proposal; the fourth is the redistribution of the cell to optimize the process; the fifth is to conclude from the results obtained.Findings: With the proposed method, the downtime was reduced by 41% and only 50% of the available labor is required, therefore, it is concluded that the method can be used to redesign manufacturing cells.Research limitations/implications: This research was limited to analyzing and improving human-machine interaction, since work is not just the machine, or the individual alone, or the individual manipulating the machine, therefore, no other tools were used to improve the time of machines operation.Practical implications: Designing a manufacturing cell that allows the operator to do his job with less fatigue and not adapt the operator to the job, as commonly happens.Social implications: Companies must show a greater interest in occupational health by including human capital in their optimization plans to avoid future harm to workers.Originality/value: The key contribution of this paper focused on developing a novel and practical methodology to design or re-design manufacturing cells to improve productivity considering the human factor, inspired by the main concepts of method engineering.


Sign in / Sign up

Export Citation Format

Share Document