Soluble reactive phosphorus release from bryozoan dominated periphyton

Hydrobiologia ◽  
1986 ◽  
Vol 131 (2) ◽  
pp. 145-148 ◽  
Author(s):  
John P. S�rensen ◽  
Hans H. Riber ◽  
Andrzej Kowalczewski
Author(s):  
Bradley J. Austin ◽  
Violet Eagle ◽  
Michelle A. Evans-White ◽  
J. Thad Scott ◽  
Brian E. Haggard

Nuisance periphyton growth influences the aesthetics, recreation, and aquatic life of waterbodies. Partners Lake is a shallow spring-fed lake in the headwaters of the Illinois River Watershed in Cave Springs, Arkansas, that experiences nuisance growth of periphyton (i.e., Spirogyra spp.) each year. The ratio of dissolved nitrogen (N ~5.0 mg L-1) and phosphorus (P ~0.030 mg L-1) in the lake water (N:P≥288), as well as nutrient limitation assays, suggests that periphyton growth should be P-limited. While the water column lacks sufficient P to promote growth, the sediments have the ability to release P to the overlying water; P-flux ranged from 1.63 mg m-2 d-1 to over 10 mg m-2 d-1, reaching final concentrations of 0.08 to 0.34 mg L-1. However, soluble reactive phosphorus concentrations were consistently at or below 0.030 mg L-1, in the lake, suggesting that the periphyton were likely immobilizing P as quickly as it was released from the sediments. In the lab, maximal periphyton growth (~30 to 35 mg m-2) occurred in the 0.10 to 0.25 mg L-1 P treatments, over a 6 day incubation period. Similar levels of growth occurred when lake sediments were the P source, suggesting P released from the sediments is sufficient to support nuisance algal growth. We need to begin managing the legacy P stored in the sediments, in addition to external P loads, because internal P can sustain nuisance periphyton biomass when N is not limiting.


2008 ◽  
Vol 58 (9) ◽  
pp. 1813-1822 ◽  
Author(s):  
O. Gabriel ◽  
D. Balla ◽  
T. Kalettka ◽  
S. Maassen

The cultivated riverine wetland region Spreewald faces detrimental changes in the hydrological conditions due to a significant discharge reduction. With its dense network of impounded waterways and a forced tendency of sedimentation of soluble reactive phosphorus adsorbed to large amounts of FeOH/FeOOH available from mining water and groundwater discharges the 320 km2 region is favoured to accumulate large amounts of total phosphorus (TR) and thus act as an effective phosphorus sink. The change of conditions strongly challenges this function hereafter. This is especially important because eutrophication of lakes downstream the Spreewald region is controlled by phosphorus. Phosphorus balances at a testfield situated in a polder area typical for the central Spreewald region point out that hydrological and consequently hydraulic conditions are the key factors for the phosphorus sink or source behaviour. This is true for the main processes determine P retention and release at the sediment-surface water transition zone as well as for the dominant phosphorus release and retention pathways: groundwater emissions and sedimentation. In the context of hydrological changes in the Spree river catchment results from point scale and river reach scale point out the need for an adapted water management in the Spreewald region to prevent risk of extended eutrophication tendencies downstream due to forced SRP emissions.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1947
Author(s):  
Ling Su ◽  
Chen Zhong ◽  
Lei Gan ◽  
Xiaolin He ◽  
Jinlei Yu ◽  
...  

The application of lanthanum modified bentonite (Phoslock®) and polyaluminium chloride (PAC) is popular in the restoration of European temperate lakes; however, the effects of the application on the concentrations of phosphorus (P) in both the water and the sediments have been poorly evaluated to date. We studied the effects of the application of Phoslock® + PAC on the concentrations of total phosphorus (TP), particulate phosphorus (PP), soluble reactive phosphorus (SRP), total suspended solids (TSS) and chlorophyll a (Chla) in the water, and different P forms in the sediments, in an isolated part of Lake Yanglan. The results showed that the concentrations of TP, PP, SRP, TSS and Chla decreased significantly after the addition of Phoslock® + PAC. Moreover, the concentrations of labile-P, reductant-soluble-P and organic-P in the sediments were also significantly decreased after the Phoslock® + PAC application. However, the concentrations of both the stable apatite-P and residual-P in the sediments after application of Phoslock® + PAC were much higher than the pre-addition values, while the concentrations of metal-oxide-P did not differ significantly between the pre- and post- application conditions. Our findings imply that the combined application of Phoslock® and PAC can be used in the restoration of subtropical shallow lakes, to reduce the concentrations of P in the water and suppress the release of P from the sediments.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Qing Xu ◽  
Xiaoping Yu ◽  
Yafei Guo ◽  
Tianlong Deng ◽  
Yu-Wei Chen ◽  
...  

Overlying sediment and pore waters were collected in summer and winter at upstream (Jintang) and downstream (Neijiang) sites of the Tuohe River, which is one of the five largest tributaries of the Yangtze River in China. Phosphorus species, including soluble reactive phosphorus (SRP), soluble unreactive phosphorus (SUP), and total dissolved phosphorus (TDP), and some diagenetic constituents including dissolved Fe(II), Mn(II), and sulfide in overlying and pore waters, were measured systematically. The seasonal variations and vertical distributions of phosphorus species in overlying and pore waters at both sampling sites were obtained to elucidate some aspects of the transport and transformations of phosphorus. Based on the profiles of pore and overlying waters as well as the TDN/TDP data during an algal bloom in 2007, it was clearly demonstrated that phosphorus was the main factor limiting the phytoplankton growth in the Tuohe River.


2014 ◽  
Vol 122 (2-3) ◽  
pp. 229-251 ◽  
Author(s):  
Lauriane Vilmin ◽  
Najla Aissa-Grouz ◽  
Josette Garnier ◽  
Gilles Billen ◽  
Jean-Marie Mouchel ◽  
...  

1984 ◽  
Vol 41 (6) ◽  
pp. 985-988 ◽  
Author(s):  
A. H. El-Shaarawi ◽  
M. A. Neilson

Water samples were collected on Lake Ontario during April and November, filtered (0.45 μm), and immediately analyzed onboard ship for the nutrients soluble reactive phosphorus, nitrate-plus-nitrite, and ammonia. Replicates were stored in glass bottles at 4 °C and reanalyzed within 8 d. Statistical analysis showed that soluble reactive phosphorus decreased by 11 and 13% and nitrate-plus-nitrite by 7 and 6%, whereas ammonia increased by 75% on one cruise and decreased by 37% on the other.


2016 ◽  
Vol 77 (3) ◽  
pp. 495-505 ◽  
Author(s):  
R. S. Cordeiro ◽  
J. E. L. Barbosa ◽  
G. Q. Lima Filho ◽  
L. G. Barbosa

Abstract The hydrological periods drive the structure and organization of aquatic communities in semiarid regions. We hypothesize that a decrease of the precipitation during the dry period will favor the development of the periphytic algal community, leading to higher richness and density in this period. To test this hypothesis, we investigated the changes in the periphytic algal community structure in three shallow and eutrophic ecosystems of the Brazilian semiarid. The sampling was performed between 2007 and 2010 at two-mensal intervals. The sampling of periphytic algal was performed in aquatic macrophytes and rocks. The abiotic variables were analyzed simultaneously. Dominance in diatoms, cyanobacteria and chlorophytes, respectively, was observed in two periods. In the dry period, waters were alkaline and had high concentrations of nitrate and total phosphorus associated with the highest densities of Bacillariophyceae. In the rainy period the water was warmer, oxygenated and high concentrations of ammonia and soluble reactive phosphorus with diatoms remained dominant but with reduced density, while cyanobacteria and chlorophytes increased. Overall, periphytic algal community composition no responded to changes in the hydrological periods. However, the hydrological periods altered the dynamics of periphytic algal community, supported by the alternation of the most representative classes (diatoms and cyanobacteria) between the hydrologic periods. Our data suggest that the morphometric and chemical and physical characteristics of lentic aquatic ecosystems studied were more important in the dynamics of periphytic algal community than the hydrological periods and types of substrates.


2019 ◽  
Vol 78 (2) ◽  
Author(s):  
Carlos Y. B. Oliveira ◽  
Cicero D. L. Oliveira ◽  
Ayanne J. G. Almeida ◽  
Alfredo O. Gálvez ◽  
Danielli M. Dantas

The temporal phytoplankton biomass variation at two Neotropical reservoirs during an extreme drought season were analyzed. Here we sought to evaluate the main abiotic factors involved in dynamics of phytoplankton during this drought period. The main difference between the reservoirs was the intensive fish and shrimp farming in one of the reservoirs. For quantitative analysis, sampling with bottles were carried out at an average depth of 0.5m. Water temperature, pH and electrical conductivity parameters were measured in situ and water samples were collected for dissolved inorganic nitrogen and soluble reactive phosphorus analyses. Aquaculture was probably one among the causes for the reservoirs were so different in the physical and chemical variables, as shown by the principal components analysis. The results showed specific groups dominance in both reservoirs. In the Cachoeira II reservoir, an invasive dinoflagellate, Ceratium furcoides, was present in all analyzed months, while, in the Saco I reservoir, cyanobacteria group represented more than 50% of phytoplankton biomass, mainly Microcystis aeruginosa and Dolichospermum sp. In two reservoirs precipitation, soluble reactive phosphorus and electrical conductivity were positively related with phytoplankton. Phytoplankton biomass was considerably larger in the Cachoeira II reservoir, due to the greater size and biovolume of the dominant dinoflagellate. These findings suggest that species dominance in extreme drought events may be favored.


Sign in / Sign up

Export Citation Format

Share Document