Capillarization, mitochondrial densities, oxygen diffusion distances and innervation of red and white muscle of the lizard Dipsosaurus dorsalis

1984 ◽  
Vol 237 (2) ◽  
pp. 253-258 ◽  
Author(s):  
ToddT. Gleeson ◽  
ColinJ.M. Nicol ◽  
IanA. Johnston
1996 ◽  
Vol 271 (5) ◽  
pp. R1447-R1451
Author(s):  
D. A. Scholnick ◽  
T. T. Gleeson

Changes in liver and skeletal muscle fructose-2,6-bisphosphate (Fru-2,6-P2) concentrations were compared during fasting, exercise, and recovery in the lizard Dipsosaurus dorsalis and in outbred mice (Mus musculus). We present the first correlative evidence that suggests that a decrease in the content of Fru-2,6-P2 may mediate elevated gluconeogenesis in lizard skeletal muscle. Contents of Fru-2,6-P2 in lizard gastrocnemius and red and white iliofibularis (IF) were significantly lower (as much as 55% in white IF) during recovery from exhaustive exercise than at rest. Recovery from exhaustive exercise had no significant effect on Fru-2,6-P2 concentrations in any mouse muscle examined. Fasting significantly depressed lizard and mouse liver Fru-2,6-P2 contents and decreased lizard red IF by over 84% from the fed condition. Lizard red and white muscle fiber bundles incubated in 20 mM lactate had significantly lower Fru-2,6-P2 (94 and 61% depression, respectively) than those incubated in 8.5 mM glucose. These results are consistent with the hypothesis that Fru-2,6-P2 acts as a signal for controlling gluconeogenesis in lizard skeletal muscle.


Author(s):  
R.L. Sabatini ◽  
Yimei Zhu ◽  
Masaki Suenaga ◽  
A.R. Moodenbaugh

Low temperature annealing (<400°C) of YBa2Cu3O7x in a ozone containing oxygen atmosphere is sometimes carried out to oxygenate oxygen deficient thin films. Also, this technique can be used to fully oxygenate thinned TEM specimens when oxygen depletion in thin regions is suspected. However, the effects on the microstructure nor the extent of oxygenation of specimens has not been documented for specimens exposed to an ozone atmosphere. A particular concern is the fact that the ozone gas is so reactive and the oxygen diffusion rate at these temperatures is so slow that it may damage the specimen by an over-reaction. Thus we report here the results of an investigation on the microstructural effects of exposing a thinned YBa2Cu3O7-x specimen in an ozone atmosphere using transmission electron microscopy and energy loss spectroscopy techniques.


2002 ◽  
Vol 716 ◽  
Author(s):  
You-Seok Suh ◽  
Greg Heuss ◽  
Jae-Hoon Lee ◽  
Veena Misra

AbstractIn this work, we report the effects of nitrogen on electrical and structural properties in TaSixNy /SiO2/p-Si MOS capacitors. TaSixNy films with various compositions were deposited by reactive sputtering of TaSi2 or by co-sputtering of Ta and Si targets in argon and nitrogen ambient. TaSixNy films were characterized by Rutherford backscattering spectroscopy and Auger electron spectroscopy. It was found that the workfunction of TaSixNy (Si>Ta) with varying N contents ranges from 4.2 to 4.3 eV. Cross-sectional transmission electron microscopy shows no indication of interfacial reaction or crystallization in TaSixNy on SiO2, resulting in no significant increase of leakage current in the capacitor during annealing. It is believed that nitrogen retards reaction rates and improves the chemical-thermal stability of the gate-dielectric interface and oxygen diffusion barrier properties.


2018 ◽  
Vol 74 (1) ◽  
pp. 6029-2018
Author(s):  
HANDAN MERT ◽  
SERKAN YİLDİRİM ◽  
IBRAHİM HAKKİ YORUK ◽  
KİVANC IRAK ◽  
BAHAT COMBA ◽  
...  

Vitamins are essential for the health of all living organisms. Vitamins E, A, D and K are known as fat-soluble vitamins, and deprivation of vitamin E causes various disorders, especially in the reproduction and cardiovascular systems and in muscle functions. Vitamin A, on the other hand, has roles in various biological functions – like eyesight – and the growth, reproduction and differentiation of epithelial cells. Vitamin A deficiency leads to the keratinization of the epithelium, and disorders related to the metaplasies of the genital and genitourinary systems. Conversely, vitamin D is defined as a pro-hormone and is responsible for Cahomeostasis, and thus indirectly affects the bone metabolism, bone structure, and cellular and neural functions of Ca. White muscle disease (WMD) can occur in newborn lambs, but is more commonly seen in lambs of up to 3 months of age. In this study, 30 lambs of 3 to 50-days-old from different flocks diagnosed with White Muscle Disease (WMD) were selected as research material, while the control group consisted of 8 healthy lambs. With the aim of clarifying the cause of WMD, serum fat-soluble vitamins, retinol, α-tocopherol and vitamin D3 levels were determined in 16 lambs. Gluteal and heart musclet issue samples also were taken from 30 lambs with WMD. The vitamin levels of the samples were analysed by HPLC. The levels of serum α-tocopherol, retinols, and vitamin D3 were foundto be low in the diseased animals, but only retinol (p<0.001) and α-tocopherol (p<0.0011) level differences were statistically relevant. Macroscopically, Zenker’s necrosis was determined in the heart muscles of 17 lambs, and in the gluteal and chest muscles of 6 lambs. 7 lambs displayed necrosis in both their heart and in gluteal muscles. The samples were analyzed microscopically to reach similar findings: swollen homogeneous pink muscles, pycnotic nuclei, and hyperaemic and haemorrhagic blood vessels in gluteal, chest and heart muscles. Hyaline degeneration and Zenker's necrosis, dystrophic regions in necrotic areas, cc was detected as a severe disease in lambs at an early stage of life with advanced degeneration in different muscle tissues. Deficiency of fat-soluble vitamins was also detected in the sick animals. Control group lambs had higher levels of α tocopherol and retinol (p<0.001) compared to the sick lambs. .


1995 ◽  
Vol 32 (8) ◽  
pp. 67-74 ◽  
Author(s):  
Satoshi Okabe ◽  
Kikuko Hirata ◽  
Yoshimasa Watanabe

Dynamic changes in spatial microbial distribution in mixed-population biofilms were experimentally determined using a microslicer technique and simulated by a biofilm accumulation model (BAM). Experimental results were compared with the model simulation. The biofilms cultured in partially submerged rotating biological contactors (RBC) with synthetic wastewater were used as test materials. Experimental results showed that an increase of substrate loading rate (i.e., organic carbon and NH4-N) resulted in the microbial stratification in the biofilms. Heterotrophs defeated nitrifiers and dominated in the outer biofilm, whereas nitrifiers were diluted out in the outer biofilm and forced into the inner biofilm. At higher organic loading rates, a stronger stratified microbial spatial distribution was observed, which imposed a severe internal oxygen diffusion limitation on nitrifiers and resulted in the deterioration of nitrification efficiency. Model simulations described a general trend of the stratified biofilm structure. However, the actual stratification was stronger than the simulated results. For implication in the reactor design, when the specific carbon loading rate exceeds a certain limit, nitrification will be deteriorated or require a long start-up period due to the interspecies competition resulting in oxygen diffusion limitation. The extend of microbial stratification in the biofilm is especially important for determination of feasibility of nitrification in the presence of organic matters.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 171-175
Author(s):  
Artem Khlebnikov ◽  
Falilou Samb ◽  
Paul Péringer

p-toluenesulphonic acid degradation by Comamonas testosteroni T-2 in multi-species biofilms was studied in a fixed bed biofilm reactor. The polypropylene static mixer elements (Sulzer Chemtech Ltd., Switzerland) were used as a support matrix for biofilm formation. Biofilm respiration was estimated using the dynamic gassing-out oxygen uptake method. A strong relation between oxygen uptake and reactor degradation efficiency was observed, because p-toluenesulphonate degradation is a strictly aerobic process. This technique also allowed us to estimate the thickness of the active layer in the studied system. The mean active thickness was in order of 200 μm, which is close to maximum oxygen penetration depth in biofilms. A transient mathematical model was established to evaluate oxygen diffusitivity in non-steady-state biofilms. Based on the DO concentration profiles, the oxygen diffusion coefficient and the maximum respiration activity were calculated. The oxygen diffusion coefficient obtained (2 10−10-1.2 10−9 m2 s−1) is in good agreement with published values. The DO diffusion coefficient varied with biofilm development. This may be, most likely, due to the biofilm density changes during the experiments. The knowledge of diffusivity changes in biofilms is particularly important for removal capacity estimation and appropriate reactor design.


Sign in / Sign up

Export Citation Format

Share Document