The importance of monitoring metabolic recovery in the coral Acropora cervicornis after short-term exposure to drilling muds: Calcification rate and protein concentration

Coral Reefs ◽  
1984 ◽  
Vol 2 (4) ◽  
pp. 215-225 ◽  
Author(s):  
J. J. Kendall ◽  
E. N. Powell ◽  
S. J. Connor ◽  
T. J. Bright ◽  
C. E. Zastrow
2019 ◽  
Author(s):  
Samuel J. Gurr ◽  
Brent Vadopalas ◽  
Steven B. Roberts ◽  
Hollie M. Putnam

AbstractWhile acute stressors can be detrimental, environmental stress conditioning can improve performance. To test the hypothesis that physiological status is altered by stress conditioning, we subjected juvenile Pacific geoduck, Panopea generosa, to repeated exposures of elevated pCO2 in a commercial hatchery setting followed by a period in ambient common garden. Respiration rate and shell length were measured for juvenile geoduck periodically throughout short-term repeated reciprocal exposure periods in ambient (~550 µatm) or elevated (~2400 µatm) pCO2 treatments and in common, ambient conditions, five months after exposure. Short-term exposure periods comprised an initial 10-day exposure followed by 14 days in ambient before a secondary 6-day reciprocal exposure. The initial exposure to elevated pCO2 significantly reduced respiration rate by 25% relative to ambient conditions, but no effect on shell growth was detected. Following 14 days in common garden, ambient conditions, reciprocal exposure to elevated or ambient pCO2 did not alter juvenile respiration rates, indicating ability for metabolic recovery under subsequent conditions. Shell growth was negatively affected during the reciprocal treatment in both exposure histories, however clams exposed to the initial elevated pCO2 showed compensatory growth with 5.8% greater shell length (on average between the two secondary exposures) after five months in ambient conditions. Additionally, clams exposed to the secondary elevated pCO2 showed 52.4% increase in respiration rate after five months in ambient conditions. Early exposure to low pH appears to trigger carry-over effects suggesting bioenergetic re-allocation facilitates growth compensation. Life stage-specific exposures to stress can determine when it may be especially detrimental, or advantageous, to apply stress conditioning for commercial production of this long-lived burrowing clam.Lay summaryCommercial shellfish hatcheries provide essential food security, but often production can be hampered by sensitivity of shellfish at early life stages. Repeated short-term exposures can increase tolerance and performance of the geoduck clam with implications for sustainable aquaculture.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Samuel J Gurr ◽  
Brent Vadopalas ◽  
Steven B Roberts ◽  
Hollie M Putnam

Abstract While acute stressors can be detrimental, environmental stress conditioning can improve performance. To test the hypothesis that physiological status is altered by stress conditioning, we subjected juvenile Pacific geoduck, Panopea generosa, to repeated exposures of elevated pCO2 in a commercial hatchery setting followed by a period in ambient common garden. Respiration rate and shell length were measured for juvenile geoduck periodically throughout short-term repeated reciprocal exposure periods in ambient (~550 μatm) or elevated (~2400 μatm) pCO2 treatments and in common, ambient conditions, 5 months after exposure. Short-term exposure periods comprised an initial 10-day exposure followed by 14 days in ambient before a secondary 6-day reciprocal exposure. The initial exposure to elevated pCO2 significantly reduced respiration rate by 25% relative to ambient conditions, but no effect on shell growth was detected. Following 14 days in common garden, ambient conditions, reciprocal exposure to elevated or ambient pCO2 did not alter juvenile respiration rates, indicating ability for metabolic recovery under subsequent conditions. Shell growth was negatively affected during the reciprocal treatment in both exposure histories; however, clams exposed to the initial elevated pCO2 showed compensatory growth with 5.8% greater shell length (on average between the two secondary exposures) after 5 months in ambient conditions. Additionally, clams exposed to the secondary elevated pCO2 showed 52.4% increase in respiration rate after 5 months in ambient conditions. Early exposure to low pH appears to trigger carryover effects suggesting bioenergetic re-allocation facilitates growth compensation. Life stage-specific exposures to stress can determine when it may be especially detrimental, or advantageous, to apply stress conditioning for commercial production of this long-lived burrowing clam.


1985 ◽  
Vol 87 (1) ◽  
pp. 33-46 ◽  
Author(s):  
J. J. Kendall ◽  
E. N. Powell ◽  
S. J. Connor ◽  
T. J. Bright ◽  
C. E. Zastrow

2013 ◽  
Vol 8 (11) ◽  
pp. 1083-1093 ◽  
Author(s):  
Martina Varga ◽  
Janja Horvatić ◽  
Ante Čelić

AbstractThe effects of mercury (Hg), cadmium (Cd) and chromium (Cr) in concentrations ranging from 0.02 to 20 mg L−1 applied for 24 h were assessed in Lemna minor and Lemna gibba by measuring changes in protein concentration, ascorbic acid, phenolics, malondialdehyde (MDA), hydrogen peroxide (H2O2), the activity of guaiacol peroxidase (G-POX) and catalase (CAT). Ascorbic acid, phenolics, catalase and guaiacol peroxidase played a key role in the antioxidative response of L. gibba. Inadequate activity of antioxidant enzymes in the L. minor resulted in MDA and H2O2 accumulation. In both used species, Hg treatment decreased protein content and increased CAT and G-POX activity, but decreased MDA and H2O2 levels. Cadmium and chromium had opposite impacts on two used Lemna species on almost all observed parameters. Enhanced antioxidative responses of L. gibba to lower concentrations of Hg, Cd and Cr indicated greater abiotic stress tolerance than L. minor.


1976 ◽  
Vol 36 (01) ◽  
pp. 221-229 ◽  
Author(s):  
Charles A. Schiffer ◽  
Caroline L. Whitaker ◽  
Morton Schmukler ◽  
Joseph Aisner ◽  
Steven L. Hilbert

SummaryAlthough dimethyl sulfoxide (DMSO) has been used extensively as a cryopreservative for platelets there are few studies dealing with the effect of DMSO on platelet function. Using techniques similar to those employed in platelet cryopreservation platelets were incubated with final concentrations of 2-10% DMSO at 25° C. After exposure to 5 and 10% DMSO platelets remained discoid and electron micrographs revealed no structural abnormalities. There was no significant change in platelet count. In terms of injury to platelet membranes, there was no increased availability of platelet factor-3 or leakage of nucleotides, 5 hydroxytryptamine (5HT) or glycosidases with final DMSO concentrations of 2.5, 5 and 10% DMSO. Thrombin stimulated nucleotide and 5HT release was reduced by 10% DMSO. Impairment of thrombin induced glycosidase release was noted at lower DMSO concentrations and was dose related. Similarly, aggregation to ADP was progressively impaired at DMSO concentrations from 1-5% and was dose related. After the platelets exposed to DMSO were washed, however, aggregation and release returned to control values. Platelet aggregation by epinephrine was also inhibited by DMSO and this could not be corrected by washing the platelets. DMSO-plasma solutions are hypertonic but only minimal increases in platelet volume (at 10% DMSO) could be detected. Shrinkage of platelets was seen with hypertonic solutions of sodium chloride or sucrose suggesting that the rapid transmembrane passage of DMSO prevented significant shifts of water. These studies demonstrate that there are minimal irreversible alterations in in vitro platelet function after short-term exposure to DMSO.


2016 ◽  
Vol 307 ◽  
pp. 137-144 ◽  
Author(s):  
Gaëtan Philippot ◽  
Fred Nyberg ◽  
Torsten Gordh ◽  
Anders Fredriksson ◽  
Henrik Viberg

2021 ◽  
Vol 151 ◽  
pp. 106416
Author(s):  
Huaxi Gao ◽  
Jieran Shi ◽  
Hongguang Cheng ◽  
Yaqin Zhang ◽  
Yan Zhang

Sign in / Sign up

Export Citation Format

Share Document