Selective inhibition of cell proliferation and DNA synthesis by the polysulphated carbohydrate ι-carrageenan

1995 ◽  
Vol 36 (4) ◽  
pp. 325-334 ◽  
Author(s):  
Richard Hoffman ◽  
Walter Woodrow Burns ◽  
Dietrich H. Paper
1992 ◽  
Vol 25 (11) ◽  
pp. 341-345 ◽  
Author(s):  
C. Furihata ◽  
M. Yamashita ◽  
N. Kinae ◽  
T. Matsushima

MX is a strong direct acting mutagen on Salmonella typhimurium TA100 and is present in chlorinated tap water which contains organic compounds. MX was administered orally to 7-week-old male F344 rats, and its geno-toxicity in the pyloric mucosa of stomach was examined by analysis of DNA single strand scissions by the alkaline elution method. The effect of MX on cell proliferation was examined by assays of the inductions of replicative DNA synthesis and ornithine decarboxylase. MX at closes of 20-48 mg/kg body weight induced DNA single strand scissions dose-dependently (p<0.02) in the pyloric mucosa of the stomach 2 h after its administration. Moreover at doses of 10-60 mg/kg body weight, it induced up to 21-fold increase in replicative DNA synthesis (p<0.01) 16 h after its administration. At doses of 10-60 mg/kg body weight, it induced up to 100-fold increase in ornithine decarboxylase activity with a maximum 16 h after its administration. These results suggest that MX is genotoxic and induces cell proliferation in the glandular stomach of rats.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Qian Liu ◽  
Lijuan Guo ◽  
Hongyan Qi ◽  
Meng Lou ◽  
Rui Wang ◽  
...  

AbstractRibonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.


2005 ◽  
Vol 185 (3) ◽  
pp. 393-399 ◽  
Author(s):  
G M Ledda-Columbano ◽  
A Perra ◽  
M Pibiri ◽  
F Molotzu ◽  
A Columbano

Thyroid hormone is known to elicit diverse cellular and metabolic effects in various organs, including mitogenesis in the rat liver. In the present study, experiments were carried out to determine whether thyroid hormone is able to stimulate cell proliferation in another quiescent organ such as the pancreas. 3,5,3′-l-tri-iodothyronine (T3) added to the diet at a concentration of 4 mg/kg caused a striking increase in nuclear bromodeoxyuridine (BrdU) incorporation of rat acinar cells 7 days after treatment (the labeling index was 46.7% in T3-treated rats vs 7.1% in controls). BrdU incorporation was limited to the acinar cells, with duct cells and islet cells being essentially negative. The increase in DNA synthesis was accompanied by the presence of several mitotic figures. Histological examination of the pancreas did not exhibit any sign of T3-induced toxicity. Determination of the apoptotic index, measurement of the serum levels of α-amylase and lipase, and glycemia determination did not show any increase over control values, suggesting that the enhanced proliferation of acinar cells was a direct effect induced by T3 and not a regenerative response consequent to acinar or β-cell injury. Additional experiments showed that DNA synthesis was induced as early as 2 days after T3 treatment (the labeling index was 9.4 vs 1.9% in controls) and was associated with increased protein levels of cyclin D1, cyclin A and proliferating cell nuclear antigen, with no substantial differences in the expression of the cyclin-dependent kinase inhibitor p27. The mitogenic effect of T3 on the pancreas was not limited to the rat, since extensive acinar cell proliferation was also observed in the pancreas of mice treated with T3 for 1 week (the labeling index was 28% in T3-treated mice vs 1.8% in controls). Treatment with three other ligands of nuclear receptors, ciprofibrate, all-trans retinoic acid and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, induced little or no pancreatic cell proliferation. These results demonstrated that T3 is a powerful inducer of cell proliferation in the pancreas and suggested that pancreatic acinar cell proliferation by selected agents may have potential for therapeutic use.


2001 ◽  
Vol 280 (4) ◽  
pp. R1230-R1239 ◽  
Author(s):  
Kasiani C. Pozios ◽  
Jun Ding ◽  
Brian Degger ◽  
Zee Upton ◽  
Cunming Duan

Insulin-like growth factor (IGF)-I and -II have been cloned from a number of teleost species, but their cellular actions in fish are poorly defined. In this study, we show that both IGF-I and -II stimulated zebrafish embryonic cell proliferation and DNA synthesis in a concentration-dependent manner, whereas insulin had little mitogenic activity. Affinity cross-linking and immunoblotting studies revealed the presence of IGF receptors with the characteristics of the mammalian type I IGF receptor. Competitive binding assay results indicated that the binding affinities of the zebrafish IGF-I receptors to IGF-I, IGF-II, and insulin are 1.9, 2.6, and >190 nM, indicating that IGF-I and -II bind to the IGF-I receptor(s) with approximately equal high affinity. To further investigate the cellular mechanism of IGF actions, we have studied the effects of IGFs on two major signal transduction pathways: mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3 kinase). IGFs activated MAPK in zebrafish embryonic cells in a dose-dependent manner. This activation occurred within 5 min of IGF-I stimulation and disappeared after 1 h. IGF-I also caused a concentration-dependent activation of protein kinase B, a downstream target of PI3 kinase, this activation being sustained for several hours. Inhibition of MAPK activation by the MAPK kinase inhibitor PD-98059 inhibited the IGF-I-stimulated DNA synthesis. Similarly, use of the PI3 kinase inhibitor LY-294002 also inhibited IGF-I-stimulated DNA synthesis. When both the MAPK and PI3 kinase pathways were inhibited using a combination of these compounds, the IGF-I-stimulated DNA synthesis was completely negated. These results indicate that both IGF-I and -II are potent mitogens for zebrafish embryonic cells and that activation of both the MAPK and PI3 kinase-signaling pathways is required for the mitogenic action of IGFs in zebrafish embryonic cells.


1994 ◽  
Vol 266 (1) ◽  
pp. R194-R203 ◽  
Author(s):  
P. A. Cahill ◽  
A. Hassid

We have investigated the inhibition of DNA synthesis and cell proliferation by rat atrial natriuretic factor [rANF-(99-126)] and several synthetic peptides that bind selectively to the ANF-C-type clearance receptors in subcultured aortic smooth muscle cells. These peptides decreased serum-induced 1) [3H]thymidine incorporation, 2) cell proliferation, and 3) thymidine kinase activity without altering basal or elevated cAMP or cGMP levels. In contrast, another ANF-C-receptor-binding peptide, des[Gln116,Ser117,Gly118,Leu119,Gly120] rANF-(102-121)-NH2 (cANF), failed to decrease serum-induced mitogenesis, yet 100 nM cANF reversed the inhibition of DNA synthesis and cell proliferation and the decrease of thymidine kinase activity elicited by other C receptor-binding peptides, including rANF-(99-126), rANF-(103-125), and porcine C-type natriuretic peptide [pCNP-(1-22)]. Delayed addition experiments indicated that atrial peptides influence a relatively late event (or events) during the G1 phase of the cell cycle. The inhibition of DNA synthesis by C-receptor-binding atrial peptides appeared to be selective for aortic smooth muscle cells, inasmuch as a potent inhibitory agonist peptide, Cys116-rANF-(102-116), was without significant influence on the incorporation of thymidine in cultured rat mesangial cells or bovine pulmonary artery endothelial cells. These results indicate that atrial natriuretic peptide analogues decrease vascular smooth muscle cell mitogenesis and proliferation by a cyclic nucleotide-independent mechanism involving the C-type receptor. Moreover the inhibition of DNA synthesis by rANF-(99-126) and the neuropeptide pCNP-(1-22) appears to be mediated by the ANF-C-type receptor and is associated with inhibition of thymidine kinase activity.


1991 ◽  
Vol 261 (4) ◽  
pp. G669-G676 ◽  
Author(s):  
B. Daniele ◽  
A. Quaroni

To investigate the role of diamine oxidase (DAO) in the intestinal mucosa, we compared its expression with cell proliferation and differentiation in the human colon carcinoma cell line Caco-2. DAO synthesis was evaluated in subconfluent and confluent cultures and in the presence of epidermal growth factor (EGF), a polypeptide hormone known to have specific trophic effects on the small intestinal mucosa. EGF stimulated DNA synthesis, significantly increased cellular DAO activity and the amount of enzyme secreted into the culture medium, but decreased expression of dipeptidyl peptidase IV, a marker of cell differentiation in confluent Caco-2 cells. Immunoprecipitation of DAO from cells labeled metabolically with [35S]methionine failed to demonstrate an increased enzyme synthesis in EGF-treated cells, suggesting that this hormone acted primarily at a posttranslational level by reducing DAO degradation before intracellular storage or secretion. A possible relationship between changes in cellular DAO activity and cell proliferation was also investigated by using aminoguanidine, a specific and potent DAO inhibitor. Although DAO activity was markedly suppressed, aminoguanidine had no significant effects on the rate of DNA synthesis. These results demonstrated that in Caco-2 cells EGF stimulated DNA synthesis and DAO expression; however, cell proliferation and differentiation were not correlated with the levels of cellular DAO, suggesting that this enzyme does not play a major role in the regulation of intestinal epithelial cell turnover.


Sign in / Sign up

Export Citation Format

Share Document