On the stability of the flow of a viscoelastic fluid down an inclined plane

1967 ◽  
Vol 6 (5) ◽  
pp. 67-69 ◽  
Author(s):  
A. T. Listrov
1997 ◽  
Vol 36 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Bhabani Shankar Dandapat ◽  
Anadi Shankar Gupta

Author(s):  
A. J. Willson

AbstractConsideration is given to the flow of a micropolar liquid down an inclined plane. The steady state is analysed and Yih's technique is employed in an investigation of the stability of this flow with respect to long waves. Detailed calculations are given for thin films and it is shown that the micropolar properties of the liquid play an important role in the stability criterion.


2013 ◽  
Vol 18 (1) ◽  
pp. 99-112 ◽  
Author(s):  
P. Kumar ◽  
H. Mohan

Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1448
Author(s):  
Anand Kumar ◽  
Vinod K. Gupta ◽  
Neetu Meena ◽  
Ishak Hashim

In this article, a study on the stability of Walter-B viscoelastic fluid in the highly permeable porous medium under the rotational speed modulation is presented. The impact of rotational modulation on heat transport is performed through a weakly nonlinear analysis. A perturbation procedure based on the small amplitude of the perturbing parameter is used to study the combined effect of rotation and permeability on the stability through a porous medium. Rayleigh–Bénard convection with the Coriolis expression has been examined to explain the impact of rotation on the convective flow. The graphical result of different parameters like modified Prandtl number, Darcy number, Rayleigh number, and Taylor number on heat transfer have discussed. Furthermore, it is found that the modified Prandtl number decelerates the heat transport which may be due to the combined effect of elastic parameter and Taylor number.


1979 ◽  
Vol 46 (2) ◽  
pp. 454-456
Author(s):  
S. O. Onyegegbu

This Note examines the effect of vertical periodic motion on the stability characteristics of a viscoelastic fluid layer in a classical Benard geometry. Numerical solutions show that a resonant type behavior which enhances stability occurs at oscillation frequencies near the convective natural frequency of the viscoelastic fluid, while the effect of the periodic motion vanishes as the oscillation frequency gets very large.


2012 ◽  
Vol 67 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Beer S. Bhadauria ◽  
Atul K. Srivastava ◽  
Nirmal C. Sacheti ◽  
Pallath Chandran

The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill’s equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed.


2006 ◽  
Vol 129 (1) ◽  
pp. 116-119 ◽  
Author(s):  
Pardeep Kumar ◽  
Roshan Lal

The Rayleigh-Taylor instability of a Newtonian viscous fluid overlying Walters B′ viscoelastic fluid is considered. For the stable configuration, the system is found to be stable or unstable under certain conditions. However, the system is found to be unstable for the potentially unstable configuration. Further it is found numerically that kinematic viscosity has a destabilizing effect, whereas kinematic viscoelasticity has a stabilizing effect on the system.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 128
Author(s):  
Shahid Hussain ◽  
Afshan Batool ◽  
Md. Al Mahbub ◽  
Nasrin Nasu ◽  
Jiaping Yu

In this article, a stabilized mixed finite element (FE) method for the Oseen viscoelastic fluid flow (OVFF) obeying an Oldroyd-B type constitutive law is proposed and investigated by using the Streamline Upwind Petrov–Galerkin (SUPG) method. To find the approximate solution of velocity, pressure and stress tensor, we choose lowest-equal order FE triples P 1 - P 1 - P 1 , respectively. However, it is well known that these elements do not fulfill the i n f - s u p condition. Due to the violation of the main stability condition for mixed FE method, the system becomes unstable. To overcome this difficulty, a standard stabilization term is added in finite element variational formulation. The technique is applied herein possesses attractive features, such as parameter-free, flexible in computation and does not require any higher-order derivatives. The stability analysis and optimal error estimates are obtained. Three benchmark numerical tests are carried out to assess the stability and accuracy of the stabilized lowest-equal order feature of the OVFF.


Sign in / Sign up

Export Citation Format

Share Document