Kinetics of drug metabolism inhibition: Use of metabolite concentration-time profiles

1987 ◽  
Vol 15 (5) ◽  
pp. 497-510 ◽  
Author(s):  
P. Nicholas Shaw ◽  
J. Brian Houston
2006 ◽  
Vol 50 (6) ◽  
pp. 1953-1958 ◽  
Author(s):  
Phillip J. Bergen ◽  
Jian Li ◽  
Craig R. Rayner ◽  
Roger L. Nation

ABSTRACT There is a dearth of information on the pharmacodynamics of “colistin,” despite its increasing use as a last line of defense for treatment of infections caused by multidrug-resistant gram-negative organisms. The antimicrobial activities of colistin and colistin methanesulfonate (CMS) were investigated by studying the time-kill kinetics of each against a type culture of Pseudomonas aeruginosa in cation-adjusted Mueller-Hinton broth. The appearance of colistin from CMS spiked at 8.0 and 32 mg/liter was measured by high-performance liquid chromatography, which generated colistin concentration-time profiles. These concentration-time profiles were subsequently mimicked in other incubations, independent of CMS, by incrementally spiking colistin. When the cultures were spiked with CMS at either concentration, there was a substantial delay in the onset of the killing effect which was not evident until the concentrations of colistin generated from the hydrolysis of CMS had reached approximately 0.5 to 1 mg/liter (i.e., ∼0.5 to 1 times the MIC for colistin). The time course of the killing effect was similar when colistin was added incrementally to achieve the same colistin concentration-time course observed from the hydrolysis of CMS. Given that the killing kinetics of CMS can be accounted for by the appearance of colistin, CMS is an inactive prodrug of colistin with activity against P. aeruginosa. This is the first study to demonstrate the formation of colistin in microbiological media containing CMS and to demonstrate that CMS is an inactive prodrug of colistin. These findings have important implications for susceptibility testing involving “colistin,” in particular, for MIC measurement and for microbiological assays and pharmacokinetic and pharmacodynamic studies.


1998 ◽  
Vol 89 (3) ◽  
pp. 678-685. ◽  
Author(s):  
Sandeep Dutta ◽  
William F. Ebling

Background Propofol when administered by brief infusion in a lipid-free formulation has a slower onset, prolonged offset and greater potency compared with an emulsion formulation. To understand these findings the authors examined propofol brain and lung distribution kinetics in rats. Methods Rats were infused with equieffective doses of propofol in emulsion (n = 21) or lipid-free formulation (n = 21). Animals were sacrificed at various times to harvest brain and lung. Arterial blood was sampled repeatedly from each animal until sacrifice. Deconvolution and moment analysis were used to calculate the half-life for propofol brain turnover (BT) and brain:plasma partition coefficient (Kp). Lung concentration-time profiles were compared for the two formulations. Results Peak propofol plasma concentrations for the lipid-free formulation were 50% of that observed for emulsion formulation, whereas peak lung concentrations for lipid-free formulation were 300-fold higher than emulsion formulation. Brain Kp calculated from tissue disposition curve and ratio of brain:plasma area under the curves were 8.8 and 13, and 7.2 and 9.1 for emulsion and lipid-free formulations, respectively. BT were 2.4 and 2.5 min for emulsion and lipid-free formulations, respectively. Conclusions Significant pulmonary sequestration and slow release of propofol into arterial circulation when administered in lipid-free vehicle accounts for the lower peak arterial concentration and sluggish arterial kinetics relative to that observed with the emulsion formulation. Higher Kp for the lipid-free formulation could explain the higher potency associated with this formulation. BT were independent of formulation and correlated with values reported for effect-site equilibration half-time consistent with a distribution mechanism for pharmacologic hysteresis.


1994 ◽  
Vol 30 (9) ◽  
pp. 101-110
Author(s):  
V. Diyamandoglu

The formation of nitrate and chloride as end-products of chloramination (combined chlorination) was investigated at pH ranging between 6.9 and 9.6 at 25°C. The experimental results comprised concentration-time profiles of combined chlorine residuals along with nitrate and chloride. Nitrite, if present, was always below the detectibility limit of the analytical method used (25 ppb). Mass balances on chlorine species depicted that chloride formed during the slow decay of combined chlorine residuals does not account for all the chlorine lost. This substantiates the formation of other reaction end-products which are yet to be identified. A kinetic model for chloramination is proposed based on the kinetic data obtained in this study.


2020 ◽  
Vol 37 (12) ◽  
Author(s):  
Hannah Britz ◽  
Nina Hanke ◽  
Mitchell E. Taub ◽  
Ting Wang ◽  
Bhagwat Prasad ◽  
...  

Abstract Purpose To provide whole-body physiologically based pharmacokinetic (PBPK) models of the potent clinical organic anion transporter (OAT) inhibitor probenecid and the clinical OAT victim drug furosemide for their application in transporter-based drug-drug interaction (DDI) modeling. Methods PBPK models of probenecid and furosemide were developed in PK-Sim®. Drug-dependent parameters and plasma concentration-time profiles following intravenous and oral probenecid and furosemide administration were gathered from literature and used for model development. For model evaluation, plasma concentration-time profiles, areas under the plasma concentration–time curve (AUC) and peak plasma concentrations (Cmax) were predicted and compared to observed data. In addition, the models were applied to predict the outcome of clinical DDI studies. Results The developed models accurately describe the reported plasma concentrations of 27 clinical probenecid studies and of 42 studies using furosemide. Furthermore, application of these models to predict the probenecid-furosemide and probenecid-rifampicin DDIs demonstrates their good performance, with 6/7 of the predicted DDI AUC ratios and 4/5 of the predicted DDI Cmax ratios within 1.25-fold of the observed values, and all predicted DDI AUC and Cmax ratios within 2.0-fold. Conclusions Whole-body PBPK models of probenecid and furosemide were built and evaluated, providing useful tools to support the investigation of transporter mediated DDIs.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 191-191
Author(s):  
Paolo Abada ◽  
Yiu-Keung Lau ◽  
Ran Wei ◽  
Lisa O’Brien ◽  
Amanda Long ◽  
...  

191 Background: Ramucirumab is a human recombinant immunoglobin G1 monoclonal antibody (mAb) antagonist of vascular endothelial growth factor receptor-2. Ramucirumab dosed at 8 mg/kg every 2 weeks or 10 mg/kg every 3 weeks, either as monotherapy or in combination with chemotherapy, was initially studied with as an intravenous infusion over 60 minutes following premedication with a histamine-1 receptor antagonist. Lengthy intravenous infusions are inconvenient for patients and increase the workloads of nursing and administrative staff. Shortening the infusion duration of ramucirumab could therefore benefit both patients and healthcare professionals. The current analysis determined the impact such a change could have on the pharmacokinetic (PK) profile of ramucirumab. Additionally, the relationship between infusion rate and incidence of immediate infusion-related reactions (IRRs; occurring on the day of administration), common adverse events associated with mAb infusions, was assessed. Methods: A population pharmacokinetic model was established using concentration–time data collected from 2522 patients who received one of five different ramucirumab regimens involving an intravenous infusion over ~60 minutes in 17 clinical studies. The final PK model was used to simulate concentration–time profiles and exposure parameters following ramucirumab infusion durations of 30 vs 60 min. Phase II/III clinical study data from patients receiving ramucirumab were pooled to assess the association between ramucirumab infusion rate and incidence of immediate IRRs using multivariate logistic regression analysis. Results: Ramucirumab infusions of 30- and 60-min durations resulted in equivalent concentration–time profiles and, hence, equivalent systemic exposure to ramucirumab. Among 3216 patients receiving ramucirumab in phase II/III studies, 254 (7.9%) had at least one immediate any-grade IRR; 17 (0.5%) experienced grade ≥3 immediate IRRs. The incidence of immediate IRRs (any grade or grade ≥3) was similar across infusion rate quartiles. Under multivariate logistic analysis, infusion rate was not significantly associated with an increased risk of an immediate IRR (odds ratio per 1 mg/min increase 1.014, 95% confidence interval 0.999, 1.030; p=0.071). Conclusions: Administering ramucirumab using different infusion durations (30 vs 60 min) did not affect ramucirumab exposure. Analysis of clinical study data showed a faster infusion rate was not associated with an increased risk of immediate IRRs. It is considered unlikely that shortening the infusion duration of ramucirumab will impact its clinical efficacy or overall safety profile, and is now an option for administration in the U.S.


Abstracts ◽  
1978 ◽  
pp. 837
Author(s):  
J.R. Laporte ◽  
M. Fratti ◽  
A. Cárceles ◽  
M. Arboix

Sign in / Sign up

Export Citation Format

Share Document