The impact of red mud on growth of wetland vegetation and substrate fertility

1996 ◽  
Vol 4 (1) ◽  
pp. 3-14 ◽  
Author(s):  
T. Kong ◽  
Irving A. Mendelssohn
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sarath Chandra K ◽  
Krishnaiah S ◽  
Kibebe Sahile

Industrialization is the key to the growth of any country’s economy. However, on the other hand, the production of industrial waste is increasing enormously, which adversely impacts the environment and natural resources. Red mud is also a widespread industrial waste produced during aluminium extraction from bauxite ore in Bayer’s process. Red mud is a highly alkaline material that creates a massive environmental threat in nature. To reduce the impact of this solid waste material, the ideal method is to use it in construction works with appropriate stabilization. This study envisages the strength properties of red mud with fly ash and cement to use it as a road construction material in the subgrade. The influence of fly ash and cement on improving the strength properties of red mud was studied in detail by replacing red mud with 10%, 20%, and 30% with fly ash and 1%, 3%, and 5% of cement to its dry weight. The CBR (California bearing ratio) value was increased from 1.58% to 11.6% by stabilizing red mud with fly ash and cement, which can be used as a road construction material. The UCS (unconfined compressive strength) of red mud was increased from 825 kPa to 2340 kPa upon curing for 28 days with the right mix of fly ash and cement. Along with the strength properties, the chemical analysis of leachate for the best suitable mix was performed according to the TCLP method to understand the hazardous materials present in the red mud when it is injected as ground material. Both strength properties and the leachate characteristics prove that the red mud with suitable fly ash and cement is an excellent material in road constructions.


2015 ◽  
Vol 9 (1) ◽  
pp. 1-11
Author(s):  
Gábor Bakó ◽  
Gábor Kovács ◽  
Zsolt Molnár ◽  
Judit Kirisics ◽  
Eszter Góber ◽  
...  

The red mud disaster occurred on 4th October 2010 in Hungary has raised the necessity of rapid intervention and drew attention to the long-term monitoring of such threat. Both the condition assessment and the change monitoring indispensably required the prompt and detailed spatial survey of the impact area. It was conducted by several research groups - independently - with different recent surveying methods. The high spatial resolution multispectral aerial photogrammetry is the spatially detailed (high resolution) and accurate type of remote sensing. The hyperspectral remote sensing provides more information about material quality of pollutants, with less spatial details and lower spatial accuracy, while LIDAR ensures the three-dimensional shape and terrain models. The article focuses on the high spatial resolution, multispectral electrooptical method and the evaluation methodology of the deriving high spatial resolution ortho image map, presenting the derived environmental information database


2013 ◽  
Vol 807-809 ◽  
pp. 392-401 ◽  
Author(s):  
Chong Jian Ma ◽  
Hui Ming ◽  
Hua Shou Li

currently, the comprehensive utilization of red mud has been a worldwide challenge. Due to high alkaline level and a serious lack of nutrients, a great amount of red mud has been stocked in the open rather than covered by plantations, which showed harms to the atmosphere, water and soil environment. In order to explore a more effective phytoremediation approach of red mud and screen plants with strong tolerance, the research group applied Pennisetum hybridum as the experiment material for a long term, which is a new energy plant in the field of ecological environmental management and restoring. Through the addition of different types of addictives, his experiment conducted the plantation Pennisetum hybridum based on red mud improvement matrix. Besides, a systematic research of the improvement effects of different ameliorants on red mud was conducted. Concurrently, the growth of Pennisetum hybridum in different groups of the experiment was investigated. Their mutual effect on the improvement effect of red mud was analyzed systematically. Results demonstrated that effective raw materials of red mud improvement include phosphogypsum, wastes of polluted and edible mushrooms. These can significantly reduce the pH and conductivity of red mud. After the improvement, Pennisetum hybridum can grow vigorously in the mixture matrix of red mud, and significantly improve the red mud matrix. Concurrently, considerable biomasses were obtained. The experiment results demonstrated that the addition of necessary nutriments for the plant growth was very important for red mud. The research has laid a solid foundation for the identification of the great potentials of Pennisetum hybridum in red mud phytoremediation, the further exploration of its role of restoring of red mud and the extensive application and promotion in the future.


Estuaries ◽  
1998 ◽  
Vol 21 (1) ◽  
pp. 1 ◽  
Author(s):  
D. Elaine Evers ◽  
Charles E. Sasser ◽  
James G. Gosselink ◽  
Deborah A. Fuller ◽  
Jenneke M. Visser

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 405
Author(s):  
Valentina Dentoni ◽  
Battista Grosso ◽  
Francesco Pinna

The disposal of industrial and mineral processing residues represents a major concern for human health and the environment as a whole. In order to reduce the impact on soil and groundwater due to the waste leachability, the implementation of environmental regulations worldwide has favored the conversion of the disposal techniques from wet to dry (i.e., dry stacking or dry disposal). Such a change in the storage practice may cause the increase of particulate matter (PM) emission from the dry surfaces of the tailings exposed to wind erosion. Considering the significance of the environmental issue on a global scale and the increasingly stricter orientation of environmental policies, the need for modeling tools capable of estimating the contribution of tailing basins to air pollution becomes apparent. The paper deals with the disposal of red mud resulting from the bauxite processing in the alumina industry. An experimental research was carried with an environmental wind tunnel to estimate the Emission Factor (EF) of the basin surfaces as a function of the main affecting variables (i.e., residue water content and wind velocity). The article reports the results of the experimental test carried out on the red mud from a major basin located in Sardinia (Italy).


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Chuan-sheng Wu

In order to prevent the occurring of dam failure and leakage, sand-well drainages systems were designed and constructed in red mud tailing. It is critical to focus on the change law of the pore water pressure. The calculation model of single well drainage pore water pressure was established. The pore water pressure differential equation was deduced and the analytical solution of differential equation using Bessel function and Laplace transform was given out. The impact of parameters such as diameterd, separation distancel, loading rateq, and coefficient of consolidationCvin the function on the pore water pressure is analyzed by control variable method. This research is significant and has great reference for preventing red mud tailings leakage and the follow-up studies on the tailings stability.


Hybrid AA2024 Metal Matrix composite find explicit application, so important factors like Hardness, lightweight is considered and hybrid composite was synthesized by stir casting route. In this investigation, the effects of age hardening on Hardness of AA2024 reinforced with industrial wastes is measured by using a Vickers hardness test and the influence of different process parameters are studied using Design Expert. A Response Surface Methodology is an effective technique used to observe the impact of age hardening parameters and their interconnection on surface hardness of the prepared hybrid AA2024 composite. A mathematical model was created to optimize the weight percentage of reinforcement and artificial ageing process parameters for maximum Hardness. Adequacy and lack of fit of the developed model were checked using the Analysis of variance Technique. Hardness is taken as the response and optimum parameters are obtained by using the quadratic model. Based on the results, it can be perceived that the weight percentage of Red mud, ageing temperature and ageing time has shown a notable effect on the response. For a specifically optimized parameter, the hardness is improved and it was observed that ageing temperature is the most influencing factor based on the RSM. The optimized parameters for the desired response are Ageing Temperature is 198.87ᵒC, Ageing time is 6.82884 hours, and Red mud wt % is 4.2865 respectively. A confirmation test is carried out with the optimized parameters experimentally and its error is less than the 5 % which shows good results with RSM. Surface morphological studies are carried for the optimized Age Hardened hybrid composite and it showed the uniform distribution of reinforcements in the matrix. Because of the increased hardness, these hybrid composite would perceive real time applications like Orthopaedic braces, aircraft structures and manufacturing crew machine products.


2014 ◽  
Vol 65 (4) ◽  
pp. 312 ◽  
Author(s):  
Luis A. Peralta Pelaez ◽  
Patricia Moreno-Casasola ◽  
Hugo López Rosas

Coastal dunes include several habitats, including dune lakes. These habitats are valuable environmental assets. We analysed the impact of the surrounding land use on plant species composition, vegetation structure and water quality of 15 dune lakes in the coast of Veracruz in the Gulf of Mexico. The physical and chemical characteristics were determined for water during both the dry and rainy seasons, and vegetation was sampled once. Ammonium, nitrate, orthophosphate and total phosphorus varied between seasons and among lakes. Multivariate analysis revealed a gradient from lakes in a good state (water and wetland vegetation) to degraded lakes. These lakes fall into two groups: the first one has five lakes with a higher nutrient content, and surrounded by land where livestock is pastured and sugarcane is grown. The vegetation of these lakes consists of a combination of aquatic plants and flood-tolerant grasses introduced to feed cattle (Cynodon dactylon, Pennisetum purpureum, Setaria geniculata). Oligotrophic and mildly eutrophic lakes are characterised by little human activity, and aquatic species predominate (Cabomba palaeformis, Nymphaea ampla, Acrostichum aureum). Rural activities such as sugarcane cultivation and cattle rearing are likely the main factors causing changes in water enrichment and affecting the composition and structure of wetland vegetation. Management measures should be implemented to recover these areas and prevent further deterioration.


2011 ◽  
Vol 45 (26) ◽  
pp. 2811-2816 ◽  
Author(s):  
Yihe Zhang ◽  
Anzhen Zhang ◽  
Zhichao Zhen ◽  
Fengzhu Lv ◽  
Paul K. Chu ◽  
...  

Polypropylene (PP) based composites containing 0, 5, 10, 15, 20, 30, and 50 wt% red mud are granulated by twin-screw extrusion and injection molding. Their mechanical properties such as tensile strength, flexural strength and modulus, impact strength, and thermal properties are determined. After filling with red mud, the flexural strength and modulus, thermal deformation temperature, and Vicat softening temperature increase, whereas the impact strength decreases with increasing red mud contents. The maximum tensile strength is observed from the PP doped with 15 wt% red mud. Scanning electron microscopy (SEM) is used to investigate the dispersion of red mud in the PP matrix.


2011 ◽  
Vol 402 ◽  
pp. 288-292
Author(s):  
Zhi Fang Tong ◽  
Sen Lin Xie ◽  
Li Heng Zhang ◽  
Tao Chen ◽  
Wei Liu ◽  
...  

For the low m(Al2O3)/m(SiO2) (mass ratio, for short A/S) calcium aluminate slag obtained from smelting reduction Pingguo red mud, the impact of different n(CaO)/n(Al2O3))(molar ratio, for short C/A) and A/S on the separateing out phase of slag in cooling and solidification process was studied by FactSage thermodynamic calculation software, and the material ratio of the slag was optimized. The physical-chemical properties of slag prepared in the experiment were analyzed by means of XRD, EMS, EDS, Particle size analysis and Chemical analysis. The thermodynamic calculation results indicate that the effect of C/A on the phase composition of the slag is great, but the influnce of A/S from 0.5 to 1.0 is small, the material ratio optimized is C/S=2, A/S=0.5~1.0, C/A=1.61~1.81, under the conditions, the phase composition is mainly Ca2SiO4, Ca12Al14O33and even a small amount of less than 5% of CaAl2O4or Ca3Al2O6. The phase composition of experimental slag is consistant with that of thermodynamic calculation. In the material proportion optimized scope, the calcium aluminate slag has better the self-disintegrating and the alumina leaching performance, and satisfies completely the technological requirements of extracting alumina. The results provide the scientific basis for using the low A/S calcium aluminate slag obtained from smelting reduction Pingguo red mud producting alumina.


Sign in / Sign up

Export Citation Format

Share Document