Extragenic suppressor mutations of a β-tubulin mutation in the basidiomyceteCoprinus cinereus: Isolation and genetic and biochemical analyses

1990 ◽  
Vol 20 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Takashi Kamada ◽  
Hiroko Hirami ◽  
Tohru Sumiyoshi ◽  
Shigeru Tanabe ◽  
Tsuneo Takemaru
mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Robert S. Brzozowski ◽  
Brooke R. Tomlinson ◽  
Michael D. Sacco ◽  
Judy J. Chen ◽  
Anika N. Ali ◽  
...  

ABSTRACT Although many bacterial cell division factors have been uncovered over the years, evidence from recent studies points to the existence of yet-to-be-discovered factors involved in cell division regulation. Thus, it is important to identify factors and conditions that regulate cell division to obtain a better understanding of this fundamental biological process. We recently reported that in the Gram-positive organisms Bacillus subtilis and Staphylococcus aureus, increased production of YpsA resulted in cell division inhibition. In this study, we isolated spontaneous suppressor mutations to uncover critical residues of YpsA and the pathways through which YpsA may exert its function. Using this technique, we were able to isolate four unique intragenic suppressor mutations in ypsA (E55D, P79L, R111P, and G132E) that rendered the mutated YpsA nontoxic upon overproduction. We also isolated an extragenic suppressor mutation in yfhS, a gene that encodes a protein of unknown function. Subsequent analysis confirmed that cells lacking yfhS were unable to undergo filamentation in response to YpsA overproduction. We also serendipitously discovered that YfhS may play a role in cell size regulation. Finally, we provide evidence showing a mechanistic link between YpsA and YfhS. IMPORTANCE Bacillus subtilis is a rod-shaped Gram-positive model organism. The factors fundamental to the maintenance of cell shape and cell division are of major interest. We show that increased expression of ypsA results in cell division inhibition and impairment of colony formation on solid medium. Colonies that do arise possess compensatory suppressor mutations. We have isolated multiple intragenic (within ypsA) mutants and an extragenic suppressor mutant. Further analysis of the extragenic suppressor mutation led to a protein of unknown function, YfhS, which appears to play a role in regulating cell size. In addition to confirming that the cell division phenotype associated with YpsA is disrupted in a yfhS-null strain, we also discovered that the cell size phenotype of the yfhS knockout mutant is abolished in a strain that also lacks ypsA. This highlights a potential mechanistic link between these two proteins; however, the underlying molecular mechanism remains to be elucidated.


Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 675-683
Author(s):  
A E Adams ◽  
D Botstein

Abstract A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.


2012 ◽  
Vol 1 (4) ◽  
pp. 490-501 ◽  
Author(s):  
Laura M. Nolan ◽  
Scott A. Beatson ◽  
Larry Croft ◽  
Peter M. Jones ◽  
Anthony M. George ◽  
...  

Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 303-310
Author(s):  
M J Prival ◽  
T A Cebula

Abstract We have examined the effects of prolonged histidine deprivation on the reversion of Salmonella typhimurium histidine auxotrophs containing either hisG46, a missense mutation (CTC----CCC), or hisG428, an ochre mutation (CAA----TAA). Both of these mutants can revert to His+ via intragenic and extragenic mechanisms. Whereas the hisG46 mutant site consists of G/C base pairs, extragenic suppression of hisG46 requires mutation at an A/T site. Conversely, the hisG428 site itself contains only A/T base pairs, and extragenic suppression of hisG428 occurs principally at G/C sites. Thus, by examining the mutational spectrum of hisG46 and hisG428 revertants that occurred in the presence and in the absence of histidine, it was possible to determine the effects of histidine starvation on mutations at G/C vs. A/T sites as well as on intragenic sites vs. extragenic suppressor sites. Using DNA-colony hybridization, we determined the DNA sequences of over 1300 hisG46 and hisG428 revertants. Histidine-independent revertants that arose during growth in liquid medium that contained histidine included both intragenic and extragenic suppressor mutations. The relative frequency of such extragenic suppressors was greatly reduced among the His+ revertants that were isolated after 5-10 days of histidine starvation on agar medium. Moreover, DNA sequence analysis revealed striking differences in the distribution of particular transversions at the hisG428 locus in revertants arising after prolonged histidine starvation as compared to those arising after growth in the presence of histidine.


Genetics ◽  
1998 ◽  
Vol 148 (2) ◽  
pp. 693-702
Author(s):  
Catherine M Asleson ◽  
Paul A Lefebvre

Abstract Flagellar length in the biflagellate alga Chlamydomonas reinhardtii is under constant and tight regulation. A number of mutants with defects in flagellar length control have been previously identified. Mutations in the three long-flagella (lf) loci result in flagella that are up to three times longer than wild-type length. In this article, we describe the isolation of long-flagellar mutants caused by mutations in a new LF locus, LF4. lf4 mutations were shown to be epistatic to lf1, while lf2 was found to be epistatic to lf4 with regard to the flagellar regeneration defect. Mutations in lf4 were able to suppress the synthetic flagella-less phenotype of the lf1, lf2 double mutant. In addition, we have isolated four extragenic suppressor mutations that suppress the long-flagella phenotype of lf1, lf2, or lf3 double mutants.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Cheryl N Miller ◽  
Shaun P Steele ◽  
Jason C Brunton ◽  
Ronald J Jenkins ◽  
Eric D LoVullo ◽  
...  

Author(s):  
D. C. Brindley ◽  
M. McGill

Morphological and cytochemical studies of platelets have reported a surface coat, or glycocalyx, external to the plasma membrane (1). Biochemical analyses have likewise confirmed the highly adsorptive properties of platelets as transporters of coagulation factors (2). However, visualization of the platelet membrane by conventional EM procedures does not reflect this special relationship between the platelet and its plasma environment. By the routine method of alcohol-propylene oxide dehydration for Epon embedding, the lipid bilayer nature of the platelet membrane appears similar to other blood cells (Fig. 1). A new rapid embedding technique using dimethoxypropane (DMP) as dehydrating agent (13) has permitted ultrastructural analyses of the surface features of the platelet-plasma interface.Aliquots of human or rabbit platelet-rich plasma (PRP) were added to equal volumes of 6% glutaraldehyde in Millonig's buffer at 37° for 45 minutes, rinsed in buffer and postfixed in 1% osmium in Millonig's buffer for 45 minutes.


Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.


Sign in / Sign up

Export Citation Format

Share Document