Yield response of potato genotypes to different soil water regimes in contrasting seasons of a subtropical climate

1998 ◽  
Vol 41 (3) ◽  
pp. 239-254 ◽  
Author(s):  
J. M. Steyn ◽  
H. F. Du Plessis ◽  
P. Fourie ◽  
P. S. Hammes
2018 ◽  
Vol 110 (1) ◽  
pp. 236-245 ◽  
Author(s):  
Alan J. Schlegel ◽  
Freddie R. Lamm ◽  
Yared Assefa ◽  
Loyd R. Stone

1968 ◽  
Vol 48 (2) ◽  
pp. 129-137 ◽  
Author(s):  
A. R. Maurer ◽  
H. F. Fletcher ◽  
D. P. Ormrod

Pea plants growing in "weighing lysimeters" were subjected to five soil-water regimes to determine their response to varying conditions of soil water imposed at different stages of development. Plants subjected to a minimal water stress developed luxuriantly and continued to grow up to the harvest period. Pea yield and plant height were not reduced, but fresh weight and dry matter were less if irrigation was applied when soil water fell to 60% rather than 88% of that available. A severe water stress after blossom reduced pea yield, irrespective of soil-water conditions prior to blossom. Plants which had been given ample soil water before blossom wilted visibly when a severe stress was imposed in the post-blossom period, yet wilting did not occur in plants subjected to severe water stress both before and after blossom. Severe water stress prior to blossom did not cause a decrease in pea yield if ample soil moisture was made available after blossom.


2021 ◽  
Author(s):  
Chengpeng Sun ◽  
Wenzhi Zhao ◽  
Hu Liu ◽  
Yongyong Zhang ◽  
Hong Zhou

<p>Textural layering of soil plays an important role in distributing and regulating resources for plants in many semiarid and arid landscapes. However, the spatial patterns of textural layering and the potential effects on soil hydrology and water regimes are poorly understood, especially in arid sandy soil environments like the desert-oasis ecotones in northwestern China. This work aims to determine the distribution of textural layered soils, analyze the effects of different soil-textural configurations on water regimes, and evaluate which factors affect soil water infiltration and retention characteristics in such a desert-oasis ecotone. We measured soil water content and mineral composition in 87 soil profiles distributed along 3 transects in the study area. Constant-head infiltration experiments were conducted at 9 of the soil profiles with different texture configurations. The results showed that textural layered soils were patchily but extensively distributed throughout the study area (with a combined surface area percentage of about 84%). Soil water content in the profiles ranged from 0.002 to 0.27 g/cm<sup>3</sup> during the investigation period, and significantly and positively correlated with the thickness of a medium-textured (silt or silt loam) layer (<em>P</em> < 0.001). The occurrence of a medium-textured layer increased field capacity (FC) and wilting point (WP), and decreased available water-holding capacity in soil profiles. Burial depth of the medium-textured layer had no clear effects on water retention properties, but the layer thickness tended to. In textural layered soils, smaller water infiltration rate and cumulative infiltration, and shallower depths of wetting fronts were detected, compared with homogeneous sand profiles. The thickness and burial depth of medium-textured layers had obvious effects on infiltration, but the magnitude of the effects depended on soil texture configuration. The revealed patterns of soil textural layering and the potential effects on water regimes may provide new insight into the sustainable management of rainfed vegetation in the desert-oasis ecotones of arid northwestern China and other regions with similar environments around the world.</p>


2016 ◽  
Vol 46 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
Daniel Fonseca de Carvalho ◽  
Dionizio Honório de Oliveira Neto ◽  
Luiz Fernando Felix ◽  
José Guilherme Marinho Guerra ◽  
Conan Ayade Salvador

ABSTRACT: The aim of the present study was to evaluate the effect of different irrigation depths on the yield, water use efficiency (WUE), and yield response factor (Ky) of carrot (cv. 'Brasília') in the edaphoclimatic conditions of Baixada Fluminense, RJ, Brazil. Field trials were conducted in a Red-Yellow Argisol in the 2010-2011period. A randomized block design was used, with 5 treatments (depths) and 4 replicates. Depths were applied by drippers with different flow rates, and the irrigation was managed by time domain reflectometry (TDR) technique. The reference (ETo) and crop (ETc) evapotranspiration depths reached 286.3 and 264.1mm in 2010, and 336.0 and 329.9mm in 2011, respectively. The root yield varied from 30.4 to 68.9t ha-1 as a response to treatments without irrigation and 100% replacement of the soil water depth, respectively. Values for WUE in the carrot crop varied from 15 to 31kg m-3 and the mean Ky value was 0.82. The mean values for Kc were obtained in the initial (0.76), intermediate (1.02), and final (0.96) stages. Carrot crop was influenced by different water depths (treatments) applied, and the highest value for WUE was obtained for 63.4% of soil water replacement.


1990 ◽  
Vol 115 (5) ◽  
pp. 712-714 ◽  
Author(s):  
Doyle A. Smittle ◽  
Melvin R. Hall ◽  
James R. Stansell

Sweetpotatoes [Ipomoea batatas (L.) Lam cv. Georgia Jet] were grown on two soil types in drainage lysimeters under controlled soil water regimes during 1982 and 1983. Water regimes consisted of irrigating the sweetpotatoes throughout growth when soil water tension at 23 cm exceeded 25, 50, or 100 kPa or by allowing a 100-kPa water stress before root enlargement, during early root enlargement, or throughout root enlargement. Water use and marketable yields were greater when sweetpotatoes were grown on a Tifton loamy sand (fine loamy, siliceous, thermic, Plinthitic Paleudult) than when grown on a Bonifay sand (loamy, siliceous, thermic, Grossarenic, Plinthitic Paleudult). Water use, marketable yield, and yield of U.S. #1 grade roots generally decreased when soil water tensions exceeded 25 kPa before irrigation, although soil water stress of 100 kPa during storage root development did not significantly affect yield. Regression equations are provided to describe the relationships of water use to plant age and to compute daily evapotranspiration: pan evaporation ratios (crop factors) for sweetpotatoes irrigated at 25, 50, and 100 kPa of soil water tension.


2017 ◽  
Vol 60 (6) ◽  
pp. 1983-1994 ◽  
Author(s):  
Mónica Espadafor ◽  
Lairson Couto ◽  
Morethson Resende ◽  
Delbert W. Henderson ◽  
Margarita García-Vila ◽  
...  

Abstract. AquaCrop is a crop simulation model developed by the FAO aimed at assessing the yield response to water supply. Once the model is calibrated and validated, it is a useful tool to simulate crop yields under different management options or climatic and soil conditions. Until now, AquaCrop has not been parameterized for dry beans ( L.), and thus our objective was to calibrate and validate the model for this crop using experiments performed 40 years ago at Davis, California. A set of parameters derived from the calibration with one irrigation experiment was used to validate the model using five experiments carried out in 1977 and 1978 that had treatments vastly differing in irrigation depth and frequency. Yield predictions over a wide range of values (<1 to 3.5 t ha-1) were very good, with RMSE of 0.16 t ha-1 and Willmott’s d of 0.978. Seasonal ET was also accurately predicted by the model (RMSE = 40 mm, d = 0.930), as also evidenced by comparing the lysimeter measured ET of 489 mm against the lysimeter simulated ET of 501 mm. Canopy cover and the time course of biomass were adequately simulated as well. Even though total soil water extraction was well simulated, the simulated soil water distribution with depth differed from measured values in the dryland treatment. We conclude that AquaCrop can now be used for the simulation of dry beans in different environments, and we emphasize the value of carefully conducted field experiments for the validation of crop simulation models. Keywords: AquaCrop, Calibration and validation, Dry beans (Phaseolus vulgaris L.), Irrigation, Simulation model, Water stress.


2003 ◽  
Vol 17 (2) ◽  
pp. 139-152 ◽  
Author(s):  
A. C. Flemmer ◽  
C. A. Busso ◽  
O. A. Fernández ◽  
T. Montani

1907 ◽  
Vol 85 (3) ◽  
pp. 576-583 ◽  
Author(s):  
R. C. Pearce ◽  
L. J. Grabau ◽  
J. H. Grove ◽  
H. Lin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document