Analysis of cutting properties with reference to amount of coolant used in an environment-conscious turning process

2004 ◽  
Vol 18 (12) ◽  
pp. 2182-2189 ◽  
Author(s):  
Seung- Han Yang ◽  
Young-Moon Lee ◽  
Young- Suk Kim
Keyword(s):  
Author(s):  
Salman Khani ◽  
Seyedhamidreza Shahabi Haghighi ◽  
Mohammad Reza Razfar ◽  
Masoud Farahnakian

In this paper, the thread turning of aluminum 7075-T6 alloy is studied using micro-hole textured solid-lubricant embedded carbide inserts. The primary focus of this work is to enhance the performance of the thread turning process for producing high quality threaded parts. To achieve this, micro-holes were generated by laser micro-machining on the rake face of tools and then, MoS2 and CNT (carbon nanotube) solid-lubricants were embedded into micro-holes. The effects of micro-holes and solid-lubrication on the performance of the thread turning process were examined using traditional tool ( T0), micro-hole textured tool ( T1), micro-hole textured MoS2 embedded tool ( T2), and micro-hole textured CNT embedded tool ( T3). In this study, cutting forces, chip-tool contact length, built-up edge (BUE), surface roughness, and operating cost were investigated. The influence of micro-hole generation on the mechanical strength of cutting inserts was evaluated using the finite element method. The results showed that the fabrication of the micro-holes on the rake surface of cutting inserts has no significant effect on the mechanical strength of the tools. The comparisons of our method with traditional tools demonstrated that the cutting performance improved in the threading process. Our results reveal that the main cutting force, radial thrust force, surface roughness, built-up edge, and chip-tool contact length reduced 37.1%, 40.9%, 37.9%, 58.3%, and 38.2%, respectively, as T3 tools are applied in this process. A cost analysis, based on estimated tooling costs, showed that the T3 tool can yield an 18% reduction in overall operating cost.


Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.


Author(s):  
Menderes Kam

This study investigated the effects of Deep Cryogenic Treatment (DCT) on machinability, hardness, and microstructure in dry turning process of AISI 4140 (48-51 HRc) tempered steels with ceramic cutting tools on the surface roughness (Ra). DCT process of steels has shown significant improvement in their mechanical properties. In this context, experiments were made with Taguchi L16 method and optimum values were determined. Three different values for each control factors as: different heat treated samples, cutting speeds (160, 200, 240, 280 m/min), feed rates (0.08, 0.12, 0.16, 0.20 mm/rev) were selected. As a result, the lowest Ra value was found to be 0.159 µm for the DCTT36 sample at a cutting speed of 240 m/min, a feed rate of 0.08 mm/rev. The optimum Ra value was the lowest for the DCTT36 sample compared to the other samples as 0.206 µm. The hardness values of the micro and macro were highest for the DCTT36 sample. Microstructural point of view Scanning Electron Microscopy (SEM) point of view, the DCCT36 sample showed that best results owing to its homogeneity. It was concluded that lower Ra values can be obtained with ceramic cutting tool in dry turning experiments according to the studies in the literature review. It is thought to be preferred as an alternative to cylindrical grinding process due to lower cost.


Sign in / Sign up

Export Citation Format

Share Document