Using mid-infrared Fourier-Transform-Spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the determination ofFusarium graminearum on maize

2001 ◽  
Vol 17 (S1) ◽  
pp. 102-106 ◽  
Author(s):  
G Kos ◽  
H Lohninger ◽  
R Krska
2019 ◽  
Vol 73 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Yongliang Liu ◽  
Hee-Jin Kim

In this investigation, we applied previously proposed simple algorithms to analyze the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra of cotton fibers during secondary cell wall (SCW) biosynthesis. The infrared crystallinity ( CIIR) and maturity ( MIR) indices were compared from developmental fibers representing two pairs of upland cotton near isogenic lines (NILs). One pair of NILs consisted of Texas Marker-1 (TM-1) and an immature fiber ( im) mutant that differ in fiber maturity. The other pair of NILs included MD52ne and MD90ne that show variations in fiber strength. The observations revealed significant difference in the MIR values between developmental TM-1 and im NILs grown at a field in crop year 2015, and also a significant difference in the CIIR values between these NILs grown at the same field in crop year 2011. These different patterns of CIIR and MIR values during fiber development for the two different crop years indicated the impact of genetics and crop year on the development of fiber maturity and crystallinity of the TM-1 and im fibers. Furthermore, the tendency of linking CIIR with MIR values suggested that the im fibers have more CIIR development than the TM-1 fibers when the fibers have the similar MIR values. In contrast, the NIL pair having variations in fiber strength showed insignificant differences in the patterns of CIIR and MIR as well as the relationship between CIIR and MIR values. The results suggested that CIIR and MIR indices from ATR FT-IR measurement could be used to facilitate the understanding of how fiber genetics and crop year affect fiber maturity and crystallinity during SCW biosynthesis.


2020 ◽  
pp. 000370282096971
Author(s):  
Nataša Radosavljević Stevanović ◽  
Milena Jovanović ◽  
Federico Marini ◽  
Slavica Ražić

Heroin is one of the most frequently seized drugs in Southeastern Europe. Due to the position in the Balkan route, the Republic of Serbia keeps important role in suppression of the trafficking of heroin for domestic and foreign illegal market. This research is aimed to provide a good scientific approach in the field of seized heroin analysis. Two different forms of heroin are present in the illegal market, mostly in mixtures with typical “cutting” agents: caffeine, paracetamol, and sugars. It was observed that the quantity of pure heroin in seized samples slightly increases from year to year. The aim of this study was to produce a reliable and fast procedure for classification of illicit heroin samples and determination of the concentration range of heroin in the samples. For that purpose, the attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) technique was used and combined with such chemometric methods as principal component analysis, cluster analysis, and partial least squares. Principal component analysis (PCA) as an unsupervised model was used for exploratory purposes to identify trends, similarities, and differences between samples by reducing the dimensionality of the data. The cluster classification of examined samples turned out to be extremely useful to evaluate the possibilities of the ATR FT-IR technique to classify the samples appropriately into the patterns, the constituted clusters. Additionally, partial least square was the suitable method for the purpose of determination of the heroin hydrochloride concentration range in examined samples. It is proved that the joined application of spectroscopy and chemometrics can be extremely convenient and useful for forensic and drugs control laboratories.


Sign in / Sign up

Export Citation Format

Share Document