scholarly journals $$ \mathcal{N} $$ = 2 Conformal SYM theories at large $$ \mathcal{N} $$

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
M. Beccaria ◽  
M. Billò ◽  
F. Galvagno ◽  
A. Hasan ◽  
A. Lerda

Abstract We consider a class of $$ \mathcal{N} $$ N = 2 conformal SU(N) SYM theories in four dimensions with matter in the fundamental, two-index symmetric and anti-symmetric representations, and study the corresponding matrix model provided by localization on a sphere S4, which also encodes information on flat-space observables involving chiral operators and circular BPS Wilson loops. We review and improve known techniques for studying the matrix model in the large-N limit, deriving explicit expressions in perturbation theory for these observables. We exploit both recursive methods in the so-called full Lie algebra approach and the more standard Cartan sub-algebra approach based on the eigenvalue distribution. The sub-class of conformal theories for which the number of fundamental hypermultiplets does not scale with N differs in the planar limit from the $$ \mathcal{N} $$ N = 4 SYM theory only in observables involving chiral operators of odd dimension. In this case we are able to derive compact expressions which allow to push the small ’t Hooft coupling expansion to very high orders. We argue that the perturbative series have a finite radius of convergence and extrapolate them numerically to intermediate couplings. This is preliminary to an analytic investigation of the strong coupling behavior, which would be very interesting given that for such theories holographic duals have been proposed.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M. Billò ◽  
M. Frau ◽  
F. Galvagno ◽  
A. Lerda ◽  
A. Pini

Abstract We consider $$ \mathcal{N} $$ N = 2 superconformal quiver gauge theories in four dimensions and evaluate the chiral/anti-chiral correlators of single-trace operators. We show that it is convenient to form particular twisted and untwisted combinations of these operators suggested by the dual holographic description of the theory. The various twisted sectors are orthogonal and the correlators in each sector have always the same structure, as we show at the lowest orders in perturbation theory with Feynman diagrams. Using localization we then map the computation to a matrix model. In this way we are able to obtain formal expressions for the twisted correlators in the planar limit that are valid for all values of the ‘t Hooft coupling λ, and find that they are proportional to 1/λ at strong coupling. We successfully test the correctness of our extrapolation against a direct numerical evaluation of the matrix model and argue that the 1/λ behavior qualitatively agrees with the holographic description.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
M. Beccaria ◽  
M. Billò ◽  
M. Frau ◽  
A. Lerda ◽  
A. Pini

Abstract We consider the $$ \mathcal{N} $$ N = 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very non-trivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling λ. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |λ| < π2 of the latter.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


2020 ◽  
Vol 18 (11) ◽  
pp. 2183-2204
Author(s):  
E.I. Moskvitina

Subject. This article deals with the issues related to the formation and implementation of the innovation capacity of the Russian Federation subjects. Objectives. The article aims to develop the organizational and methodological foundations for the formation of a model of the regional innovation subsystem. Methods. For the study, I used the methods of analysis and synthesis, economics and statistics analysis, and the expert assessment method. Results. The article presents a developed basis of the regional innovation subsystem matrix model. It helps determine the relationship between the subjects and the parameters of the regional innovation subsystem. To evaluate the indicators characterizing the selected parameters, the Volga Federal District regions are considered as a case study. The article defines the process of reconciliation of interests between the subjects of regional innovation. Conclusions. The results obtained can be used by regional executive bodies when developing regional strategies for the socio-economic advancement of the Russian Federation subjects.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jorge G. Russo ◽  
Miguel Tierz

Abstract We study a unitary matrix model of the Gross-Witten-Wadia type, extended with the addition of characteristic polynomial insertions. The model interpolates between solvable unitary matrix models and is the unitary counterpart of a deformed Cauchy ensemble. Exact formulas for the partition function and Wilson loops are given in terms of Toeplitz determinants and minors and large N results are obtained by using Szegö theorem with a Fisher-Hartwig singularity. In the large N (planar) limit with two scaled couplings, the theory exhibits a surprisingly intricate phase structure in the two-dimensional parameter space.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Bartomeu Fiol ◽  
Alan Rios Fukelman

Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of $$ \mathcal{N} $$ N = 2 SQCD on S4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4.


1997 ◽  
Vol 79 (19) ◽  
pp. 3577-3580 ◽  
Author(s):  
Nathan Seiberg
Keyword(s):  

1997 ◽  
Vol 12 (31) ◽  
pp. 2331-2340 ◽  
Author(s):  
L. Chekhov ◽  
K. Zarembo

We calculate an effective action and measure induced by the integration over the auxiliary field in the matrix model recently proposed to describe IIB superstrings. It is shown that the measure of integration over the auxiliary matrix is uniquely determined by locality and reparametrization invariance of the resulting effective action. The large-N limit of the induced measure for string coordinates is discussed in detail. It is found to be ultralocal and, thus, is possibly irrelevant in the continuum limit. The model of the GKM type is considered in relation to the effective action problem.


Sign in / Sign up

Export Citation Format

Share Document