scholarly journals Inclusive production of heavy quarkonia in pNRQCD

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Nora Brambilla ◽  
Hee Sok Chung ◽  
Antonio Vairo

Abstract We develop a formalism for computing inclusive production cross sections of heavy quarkonia based on the nonrelativistic QCD and the potential nonrelativistic QCD effective field theories. Our formalism applies to strongly coupled quarkonia, which include excited charmonium and bottomonium states. Analogously to heavy quarkonium decay processes, we express nonrelativistic QCD long-distance matrix elements in terms of quarkonium wavefunctions at the origin and universal gluonic correlators. Our expressions for the long-distance matrix elements are valid up to corrections of order $$ 1/{N}_c^2 $$ 1 / N c 2 . These expressions enhance the predictive power of the nonrelativistic effective field theory approach to inclusive production processes by reducing the number of nonperturbative unknowns, and make possible first-principle determinations of long-distance matrix elements once the gluonic correlators are known. Based on this formalism, we compute the production cross sections of P-wave charmonia and bottomonia at the LHC, and find good agreement with measurements.

2022 ◽  
Vol 258 ◽  
pp. 04005
Author(s):  
Hee Sok Chung

We compute NRQCD long-distance matrix elements that appear in the inclusive production cross sections of P-wave heavy quarkonia in the framework of potential NRQCD. The formalism developed in this work applies to strongly coupled charmonia and bottomonia. This makes possible the determination of color-octet NRQCD long-distance matrix elements without relying on measured cross section data, which has not been possible so far. We obtain results for inclusive production cross sections of χcJ and χbJ at the LHC, which are in good agreement with measurements.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Juan C. Criado ◽  
Abdelhak Djouadi ◽  
Niko Koivunen ◽  
Martti Raidal ◽  
Hardi Veermäe

Abstract Using an effective field theory approach for higher-spin fields, we derive the interactions of colour singlet and electrically neutral particles with a spin higher than unity, concentrating on the spin-3/2, spin-2, spin-5/2 and spin-3 cases. We compute the decay rates and production cross sections in the main channels for spin-3/2 and spin-2 states at both electron-positron and hadron colliders, and identify the most promising novel experimental signatures for discovering such particles at the LHC. The discussion is qualitatively extended to the spin-5/2 and spin-3 cases. Higher-spin particles exhibit a rich phenomenology and have signatures that often resemble the ones of supersymmetric and extra-dimensional theories. To enable further studies of higher-spin particles at collider and beyond, we collect the relevant Feynman rules and other technical details.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Hong-Fei Zhang ◽  
Xue-Mei Mo

Abstract The ηc meson leptoproduction is calculated within the nonrelativistic QCD framework for the first time. It is found that the colour-singlet channel, although suppressed by a factor of αs relative to the colour-octet ones, provides important contribution for almost all the experimental conditions, which disagrees with some of the expectations before computation. We present the differential cross sections with respect to $$ {p}_t^2 $$ p t 2 , $$ {p}_t^{\bigstar 2} $$ p t ★ 2 , Q2, W, and z, for both HERA and EIC experimental conditions as a reference for future studies. The scale dependence and long-distance-matrix-element dependence are also investigated in this paper.


Author(s):  
Dandan Shen ◽  
Huimin Ren ◽  
Fan Wu ◽  
Ruilin Zhu

We present a next-to-leading order (NLO) relativistic correction to [Formula: see text] tensor form factors within nonrelativistic QCD (NRQCD). We also consider complete Dirac bilinears [Formula: see text] with [Formula: see text] matrices [Formula: see text] in the [Formula: see text] transition. The relation among different current form factors is given and it shows that symmetries emerge in the heavy bottom quark limit. For a phenomenological extension, we propose to extract the long-distance matrix elements (LDMEs) for [Formula: see text] meson from the recent HPQCD lattice data and the NLO form factors at large momentum recoil.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Jean-Philippe Lansberg ◽  
Hua-Sheng Shao ◽  
Nodoka Yamanaka ◽  
Yu-Jie Zhang

AbstractPrompt double-$$J/\psi $$J/ψ production at high-energy hadron colliders can be considered as a golden channel to probe double parton scatterings (DPS)—in particular to study gluon–gluon correlations inside the proton—and, at the same time, to measure the distribution of linearly-polarised gluons inside the proton. Such studies, however, require a good control of both single parton scatterings (SPS) and DPS in the respective regions where they are carried out. In this context, we have critically examined two mechanisms of SPS that may be kinematically enhanced where DPS are thought to be dominant, even though they are either at higher orders in the strong-coupling or velocity expansion. First, we have considered a gauge-invariant and infrared-safe subset of the loop-induced contribution via colour-singlet (CS) transitions. We have found it to become the leading CS SPS contributions at large rapidity separation, yet too small to account for the data without invoking the presence of DPS yields. Second, we have surveyed the possible colour-octet (CO) contributions using both old and up-to-date non-perturbative long-distance matrix elements (LDMEs). We have found that the pure CO yields crucially depend on the LDMEs. Among all the LDMEs we used, only two result into a visible modification of the NRQCD (CS+CO) yield, but only in two kinematical distributions measured by ATLAS, those of the rapidity separation and of the pair invariant mass. These modifications, however, do not impact the control region used for their DPS study.


1997 ◽  
Vol 12 (22) ◽  
pp. 3951-3963 ◽  
Author(s):  
Gerhard A. Schuler

The hierarchy of long-distance matrix elements (MEs) for quarkonium production depends on their scaling with the velocity v of the heavy quark in the bound state. Ranges for the velocities in various bound states and uncertainties of colour-singlet MEs are estimated in a quark-potential model. Different possibilities for the scaling with v of the MEs are discussed; they depend on the actual values of v and the QCD scale. As an application, J/ψ polarization in e+e- annihilation is discussed. The first non-perturbative estimates of colour-octet MEs are presented and compared with phenomenological determinations. Finally, various predictions of prompt quarkonium production at LEP are compared.


1978 ◽  
Vol 140 (3) ◽  
pp. 389-408 ◽  
Author(s):  
P. Granet ◽  
L. Mosca ◽  
J. Saudraix ◽  
J.C. Scheuer ◽  
D. Vilanova ◽  
...  

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zhan Sun

Abstract In this paper, we present a detailed next-to-leading-order (NLO) study of J/ψ angular distributions in e+e−→ J/ψ + ηc, χcJ (J = 0, 1, 2) within the nonrelativistic QCD factorization (NRQCD). The numerical NLO expressions for total and differential cross sections, i.e., $$ \frac{d\sigma}{d\cos \theta } $$ dσ d cos θ = A + B cos2θ, are both derived. With the inclusion of the newly-calculated QCD corrections to A and B, the αθ (= B/A) parameters in J/ψ + χc0 and J/ψ + χc1 are moderately enhanced, while the magnitude of αθJ/ψ+χc2 is significantly reduced; regarding the production of J/ψ + ηc, the αθ value remains unchanged. By comparing with experiment, we find the predicted αθJ/ψ+ηc is in good agreement with the Belle measurement; however, αθJ/ψ+χc0 is still totally incompatible with the experimental result, and this discrepancy seems to hardly be cured by proper choices of the charm-quark mass, the renormalization scale, and the NRQCD matrix elements.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tanumoy Mandal

LHC run-II has a great potential to search for new resonances in the diphoton channel. Latest 13 TeV data already put stringent limits on the cross sections in the diphoton channel assuming the resonance is produced through the gluon-gluon fusion. Many beyond the Standard Model (SM) theories predict TeV-scale scalars, which copiously decay to diphotons. Apart from the gluon-gluon fusion production, these scalars can also be dominantly produced in other ways too at the LHC, namely, through the quark-quark fusion or the gauge boson fusions like the photon-photon, photon-Z, WW, or ZZ fusions. In this paper we use an effective field theory approach where a heavy scalar can be produced in various ways and recast the latest ATLAS diphoton resonance search to put model-independent limits on its mass and effective couplings to the SM particles. If a new scalar is discovered at the LHC, it would be very important to identify its production mechanism in order to probe the nature of the underlying theory. We show that combining various kinematic variables in a multivariate analysis can be very powerful to distinguish different production mechanisms from one another.


Sign in / Sign up

Export Citation Format

Share Document