scholarly journals Thermal real scalar triplet dark matter

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Taisuke Katayose ◽  
Shigeki Matsumoto ◽  
Satoshi Shirai ◽  
Yu Watanabe

Abstract Real scalar triplet dark matter, which is known to be an attractive candidate for a thermal WIMP, is comprehensively studied paying particular attention to the Sommerfeld effect on the dark matter annihilation caused by the weak interaction and the other interaction between the dark matter and the Higgs boson. We find a parameter region that includes the so-called ‘WIMP-Miracle’ one is still surviving, i.e. it respects all constraints imposed by dark matter searches at collider experiments, underground experiments (direct detection) and astrophysical observations (indirect detection). The region is also found to be efficiently searched for by various near future experiments. In particular, the XENONnT experiment will cover almost the entire parameter region.

2015 ◽  
Vol 24 (07) ◽  
pp. 1530019 ◽  
Author(s):  
Mathias Garny ◽  
Alejandro Ibarra ◽  
Stefan Vogl

Three main strategies are being pursued to search for nongravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early universe via thermal freeze-out.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Wei Cheng ◽  
Yuan He ◽  
Jing-Wang Diao ◽  
Yu Pan ◽  
Jun Zeng ◽  
...  

Abstract In this paper, we investigate the possibility of testing the weakly interacting massive particle (WIMP) dark matter (DM) models by applying the simplest phenomenological model which introduces an interaction term between dark energy (DE) and WIMP DM, i.e., Q = 3γDMHρDM. In general, the coupling strength γDE is close to 0 as the interaction between DE and WIMP DM is very weak, thus the effect of γDE on the evolution of Y associated with DM energy density can be safely neglected. Meanwhile, our numerical calculation also indicates that xf ≈ 20 is associated with DM freeze-out temperature, which is the same as the vanishing interaction scenario. As for DM relic density, it will be magnified by $$ \frac{2-3{\upgamma}_{\mathrm{DM}}}{2}{\left[2\pi {g}_{\ast }{m}_{\mathrm{DM}}^3/\left(45{s}_0{x}_f^3\right)\right]}^{\gamma_{\mathrm{DM}}} $$ 2 − 3 γ DM 2 2 π g ∗ m DM 3 / 45 s 0 x f 3 γ DM times, which provides a new way to test WIMP DM models. As an example, we analyze the case in which WIMP DM is a scalar DM. (SGL+SNe+Hz) and (CMB+BAO+SNe) cosmological observations will give γDM = $$ {0.134}_{-0.069}^{+0.17} $$ 0.134 − 0.069 + 0.17 and γDM = −0.0008 ± 0.0016, respectively. After further considering the constraints from DM direct detection experiment, DM indirect detection experiment, and DM relic density, we find that the allowed parameter space of the scalar DM model will be completely excluded for the former cosmological observations, while it will increase for the latter ones. Those two cosmological observations lead to an almost paradoxical conclusion. Therefore, one could expect more stringent constraints on the WMIP DM models, with the accumulation of more accurate cosmological observations in the near future.


Author(s):  
Ivania M. Ávila ◽  
Valentina De Romeri ◽  
Laura Duarte ◽  
José W. F. Valle

AbstractWe reexamine the minimal Singlet $$+$$ + Triplet Scotogenic Model, where dark matter is the mediator of neutrino mass generation. We assume it to be a scalar WIMP, whose stability follows from the same $${\mathbb {Z}}_{2}$$ Z 2 symmetry that leads to the radiative origin of neutrino masses. The scheme is the minimal one that allows for solar and atmospheric mass scales to be generated. We perform a full numerical analysis of the signatures expected at dark matter as well as collider experiments. We identify parameter regions where dark matter predictions agree with theoretical and experimental constraints, such as neutrino oscillations, Higgs data, dark matter relic abundance and direct detection searches. We also present forecasts for near future direct and indirect detection experiments. These will further probe the parameter space. Finally, we explore collider signatures associated with the mono-jet channel at the LHC, highlighting the existence of a viable light dark matter mass range.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fabiola Fortuna ◽  
Pablo Roig ◽  
José Wudka

Abstract We analyze interactions between dark matter and standard model particles with spin one mediators in an effective field theory framework. In this paper, we are considering dark particles masses in the range from a few MeV to the mass of the Z boson. We use bounds from different experiments: Z invisible decay width, relic density, direct detection experiments, and indirect detection limits from the search of gamma-ray emissions and positron fluxes. We obtain solutions corresponding to operators with antisymmetric tensor mediators that fulfill all those requirements within our approach.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


2017 ◽  
Vol 32 (35) ◽  
pp. 1747010
Author(s):  
Yasumichi Aoki ◽  
Tatsumi Aoyama ◽  
Ed Bennett ◽  
Masafumi Kurachi ◽  
Toshihide Maskawa ◽  
...  

In the search for a composite Higgs boson in walking technicolor models, many flavor QCD, in particular with [Formula: see text], is an attractive candidate, and has been found to have a composite flavor-singlet scalar as light as the pion. Based on lattice simulations of this theory with the HISQ action, we will present our preliminary results on the scalar decay constant using the fermionic bilinear operator, and on the mass of the lightest baryon state which could be a dark matter candidate. Combining these two results, implications for dark matter direct detection are also discussed.


2013 ◽  
Vol 28 (15) ◽  
pp. 1350061 ◽  
Author(s):  
VAN E. MAYES

A survey of the mSUGRA/CMSSM parameter space is presented. The viable regions of the parameter space which satisfy standard experimental constraints are identified and discussed. These constraints include a 124–127 GeV mass for the lightest CP-even Higgs and the correct relic density for cold dark matter. The superpartner spectra corresponding to these regions fall within the well-known hyperbolic branch and are found to possess sub-TeV neutralinos and charginos, with mixed Bino/Higgsino LSP's with 200–800 GeV masses. In addition, the models possess ~3–4 TeV gluino masses and heavy squarks and sleptons with masses [Formula: see text]. Spectra with a Higgs mass mh≅125 GeV and a relic density 0.105 ≤ Ωχ0h2≤ 0.123 are found to require EWFT at around the one-percent level, while those spectra with a much lower relic density require EWFT of only a few percent. Moreover, the spin-independent neutralino–proton direct detection cross-sections are found to be below or within the XENON100 2σ limit and should be experimentally accessible now or in the near future. Finally, it is pointed out that the supersymmetry breaking soft terms corresponding to these regions of the mSUGRA/CMSSM parameter space (m0∝ m1/2with [Formula: see text] and A0= -m1/2) may be obtained from general flux-induced soft terms in Type IIB flux compactifications with D3 branes.


2013 ◽  
Vol 23 ◽  
pp. 309-313
Author(s):  
R. BERNABEI ◽  
P. BELLI ◽  
A. DI MARCO ◽  
F. MONTECCHIA ◽  
F. CAPPELLA ◽  
...  

In the field of dark matter direct detection, on the one hand, it is predicted by theoretical models that many dark matter candidates and scenarios are possible. On the other hand, a variety of detectors has been proposed, but most of them — by the fact — are still at R&D stage. Such a situation leads to some considerations on technical aspects on dark matter direct detection.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Manimala Chakraborti ◽  
Leszek Roszkowski ◽  
Sebastian Trojanowski

Abstract The recent confirmation by the Fermilab-based Muon g-2 experiment of the (g − 2)μ anomaly has important implications for allowed particle spectra in softly broken supersymmetry (SUSY) models with neutralino dark matter (DM). Generally, the DM has to be quite light, with the mass up to a few hundred GeV, and bino-dominated if it is to provide most of DM in the Universe. Otherwise, a higgsino or wino dominated DM is also allowed but only as a strongly subdominant component of at most a few percent of the total density. These general patterns can easily be found in the phenomenological models of SUSY but in GUT-constrained scenarios this proves much more challenging. In this paper we revisit the issue in the framework of some unified SUSY models with different GUT boundary conditions on the soft masses. We study the so-called non-universal gaugino model (NUGM) in which the mass of the gluino is disunified from those of the bino and the wino and an SO(10) and an SU(5) GUT-inspired models as examples. We find that in these unified frameworks the above two general patterns of DM can also be found, and thus the muon anomaly can also be accommodated, unlike in the simplest frameworks of the CMSSM or the NUHM. We show the resulting values of direct detection cross-section for points that do and do not satisfy the muon anomaly. On the other hand, it will be challenging to access those solutions at the LHC because the resulting spectra are generally very compressed.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Wen Yin

Abstract The long-standing muon g − 2 anomaly has been confirmed recently at the Fermilab. The combined discrepancy from Fermilab and Brookhaven results shows a difference from the theory at a significance of 4.2 σ. In addition, the LHC has updated the lower mass bound of a pure wino. In this letter, we study to what extent the g − 2 can be explained in anomaly mediation scenarios, where the pure wino is the dominant dark matter component. To this end, we derive some model-independent constraints on the particle spectra and g − 2. We find that the g − 2 explanation at the 1σ level is driven into a corner if the higgsino threshold correction is suppressed. On the contrary, if the threshold correction is sizable, the g − 2 can be explained. In the whole viable parameter region, the gluino mass is at most 2 − 4 TeV, the bino mass is at most 2 TeV, and the wino dark matter mass is at most 1 − 2 TeV. If the muon g − 2 anomaly is explained in the anomaly mediation scenarios, colliders and indirect search for the dark matter may find further pieces of evidence in the near future. Possible UV models for the large threshold corrections are discussed.


Sign in / Sign up

Export Citation Format

Share Document