scholarly journals On the impact of non-factorisable corrections in VBF single and double Higgs production

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Frédéric A. Dreyer ◽  
Alexander Karlberg ◽  
Lorenzo Tancredi

Abstract We study the non-factorisable QCD corrections, computed in the eikonal approximation, to Vector-Boson Fusion single and double Higgs production and show the combined factorisable and non-factorisable corrections for both processes at $$ \mathcal{O}\left({\alpha}_s^2\right) $$ O α s 2 . We investigate the validity of the eikonal approximation with and without selection cuts, and carry out an in-depth study of the relative size of the non-factorisable next-to-next-to-leading order corrections compared to the factorisable ones. In the case of single Higgs production, after selection cuts are applied, the non-factorisable corrections are found to be mostly contained within the factorisable scale uncertainty bands. When no cuts are applied, instead, the non-factorisable corrections are slightly outside the scale uncertainty band. Interestingly, for double Higgs production, we find that both before and after applying cuts, non-factorisable corrections are enhanced compared to the single Higgs case. We trace this enhancement to the existence of delicate cancellations between the various leading-order Feynman diagrams, which are partly spoiled by radiative corrections. All contributions studied here have been implemented in proVBFH v1.2.0 and proVBFHH v1.1.0.

2018 ◽  
Vol 192 ◽  
pp. 00014
Author(s):  
D.N. Triantafyllopoulos

We consider the next-to-leading order (NLO) calculation of single inclusive particle production at forward rapidities in proton-nucleus collisions and in the framework of the Color Glass Condensate (CGC). We focus on the quark channel and the corrections associated with the impact factor. In the first step of the evolution the kinematics of the emitted gluon is kept exactly (and not in the eikonal approximation), but such a treatment which includes NLO corrections is not explicitly separated from the high energy evolution. Thus, in this newly established “factorization scheme”, there is no “rapidity subtraction”. The latter suffers from fine tuning issues and eventually leads to an unphysical (negative) cross section. On the contrary, our reorganization of the perturbation theory leads by definition to a well-defined cross section and the numerical evaluation of the NLO correction is shown to have the correct size.


2018 ◽  
Vol 120 (13) ◽  
Author(s):  
Matteo Cacciari ◽  
Frédéric A. Dreyer ◽  
Alexander Karlberg ◽  
Gavin P. Salam ◽  
Giulia Zanderighi

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Frédéric A. Dreyer ◽  
Alexander Karlberg ◽  
Jean-Nicolas Lang ◽  
Mathieu Pellen

AbstractTheoretical predictions with next-to-next-to-leading order (NNLO) QCD accuracy combined with the next-to-leading order (NLO) electroweak (EW) corrections are presented for differential observables of the double-Higgs production process via vector-boson fusion. While the QCD corrections were previously known, the EW ones are computed here for the first time. The numerical results are obtained for a realistic experimental set-up at the LHC and are presented in the form of fiducial cross sections and differential distributions. Within this setup we find that the VBF approximation employed in the NNLO QCD correction is accurate at the sub-percent level. We find that the NLO EW corrections within the fiducial volume are $$-\,6.1\%$$ - 6.1 % , making them of almost the same order as the NLO QCD corrections. In some kinematic regions they can grow as large as $$-\,30\%$$ - 30 % making them the dominant radiative corrections. When the EW corrections are combined with the NNLO QCD corrections we find a total correction of $$-\,14.8\%$$ - 14.8 % . The results presented here thus comprise the state-of-the-art theoretical predicition for the double-Higgs production via vector-boson fusion, which will be of value to the high-luminosity programme at the LHC.


2017 ◽  
Vol 71 (9) ◽  
pp. 1204-1233 ◽  
Author(s):  
John P Meyer ◽  
Alexandre JS Morin ◽  
S Arzu Wasti

Researchers have recently begun to take a person-centered (profile) approach to investigate how the affective, normative and continuance commitment mindsets combine within the three-component model of organizational commitment. The meaningfulness of the profiles identified in this research depends, in part, on evidence that similar profiles emerge across samples, particularly those drawn from a common population. We conducted a particularly stringent test of similarity by comparing profiles for samples of employees drawn from a large Turkish conglomerate prior to ( N = 346) and following ( N = 797) a major economic crisis. Using procedures recently introduced by Morin et al., (2016) we found similarity in the number (seven) and structure of the profiles before and after the crisis; only the distribution of individuals across profiles (i.e. the relative size of the profiles) differed. We also found similarity in the patterns of relations with theoretical antecedent, correlate, and outcome variables, suggesting that a common set of principles might be operating regardless of major differences in the work environment. In addition to providing strong evidence for the meaningfulness of commitment profiles, this study is one of the first to investigate the impact of an economic crisis on employee commitment.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Höche ◽  
Stephen Mrenna ◽  
Shay Payne ◽  
Christian Tobias Preuss ◽  
Peter Skands

We discuss and illustrate the properties of several parton-shower algorithms available in Pythia and Vincia, in the context of Higgs production via vector boson fusion (VBF). In particular, the distinctive colour topology of VBF processes allows to define observables sensitive to the coherent radiation pattern of additional jets. We study a set of such observables, using the Vincia sector-antenna shower as our main reference, and contrast it to Pythia's transverse-momentum-ordered DGLAP shower as well as Pythia's dipole-improved shower. We then investigate the robustness of these predictions as successive levels of higher-order perturbative matrix elements are incorporated, including next-to-leading-order matched and tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the hard events.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Rikkert Frederix ◽  
Timea Vitos

AbstractWe present next-to-leading order (NLO) electroweak corrections to the dominant five angular coefficients parametrizing the Drell–Yan process in the Z-boson mass peak range for finite-$$p_T$$ p T vector boson production. The results are presented differentially in the vector boson transverse momentum. The Lam–Tung violating difference $$A_0-A_2$$ A 0 - A 2 is examined alongside the coefficients. A single lepton transverse momentum cut is needed in the case of electroweak corrections to avoid a double singularity in the photon induced diagrams, and the dependence on the value of this cut is examined. We compare the electroweak corrections to the angular coefficients to the NLO QCD corrections, including the single lepton cut. The size of the single lepton cut is found to affect the two coefficients $$A_0$$ A 0 and $$A_2$$ A 2 to largest extent. The relative size of the electroweak corrections to the coefficients is moderate for all single lepton cut values, and by extrapolation to the inclusive results, is moderate also for the full dilepton phase space case. However, for the Lam–Tung violation, there is a significant contribution from the electroweak corrections for low $$p_T$$ p T of the lepton pair.


2015 ◽  
Vol 115 (8) ◽  
Author(s):  
Matteo Cacciari ◽  
Frédéric A. Dreyer ◽  
Alexander Karlberg ◽  
Gavin P. Salam ◽  
Giulia Zanderighi

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
A. Buckley ◽  
X. Chen ◽  
J. Cruz-Martinez ◽  
S. Ferrario Ravasio ◽  
T. Gehrmann ◽  
...  

Abstract The data taken in Run II at the Large Hadron Collider have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at next-to-leading order and next-to-next-to-leading order QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the ∆yjj and/or mjj cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson pT, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement.


2018 ◽  
Vol 15 (1) ◽  
pp. 55-72
Author(s):  
Herlin Hamimi ◽  
Abdul Ghafar Ismail ◽  
Muhammad Hasbi Zaenal

Zakat is one of the five pillars of Islam which has a function of faith, social and economic functions. Muslims who can pay zakat are required to give at least 2.5 per cent of their wealth. The problem of poverty prevalent in disadvantaged regions because of the difficulty of access to information and communication led to a gap that is so high in wealth and resources. The instrument of zakat provides a paradigm in the achievement of equitable wealth distribution and healthy circulation. Zakat potentially offers a better life and improves the quality of human being. There is a human quality improvement not only in economic terms but also in spiritual terms such as improving religiousity. This study aims to examine the role of zakat to alleviate humanitarian issues in disadvantaged regions such as Sijunjung, one of zakat beneficiaries and impoverished areas in Indonesia. The researcher attempted a Cibest method to capture the impact of zakat beneficiaries before and after becoming a member of Zakat Community Development (ZCD) Program in material and spiritual value. The overall analysis shows that zakat has a positive impact on disadvantaged regions development and enhance the quality of life of the community. There is an improvement in the average of mustahik household incomes after becoming a member of ZCD Program. Cibest model demonstrates that material, spiritual, and absolute poverty index decreased by 10, 5, and 6 per cent. Meanwhile, the welfare index is increased by 21 per cent. These findings have significant implications for developing the quality of life in disadvantaged regions in Sijunjung. Therefore, zakat is one of the instruments to change the status of disadvantaged areas to be equivalent to other areas.


Sign in / Sign up

Export Citation Format

Share Document