scholarly journals Dark QED from inflation

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Asimina Arvanitaki ◽  
Savas Dimopoulos ◽  
Marios Galanis ◽  
Davide Racco ◽  
Olivier Simon ◽  
...  

Abstract One contribution to any dark sector’s abundance comes from its gravitational production during inflation. If the dark sector is weakly coupled to the inflaton and the Standard Model, this can be its only production mechanism. For non-interacting dark sectors, such as a free massive fermion or a free massive vector field, this mechanism has been studied extensively. In this paper we show, via the example of dark massive QED, that the presence of interactions can result in a vastly different mass for the dark matter (DM) particle, which may well coincide with the range probed by upcoming experiments.In the context of dark QED we study the evolution of the energy density in the dark sector after inflation. Inflation produces a cold vector condensate consisting of an enormous number of bosons, which via interesting processes — Schwinger pair production, strong field electromagnetic cascades, and plasma dynamics — transfers its energy to a small number of “dark electrons” and triggers thermalization of the dark sector. The resulting dark electron DM mass range is from 50 MeV to 30 TeV, far different from both the 10−5 eV mass of the massive photon dark matter in the absence of dark electrons, and from the 109 GeV dark electron mass in the absence of dark photons. This can significantly impact the search strategies for dark QED and, more generally, theories with a self-interacting DM sector. In the presence of kinetic mixing, a dark electron in this mass range can be searched for with upcoming direct detection experiments, such as SENSEI-100g and OSCURA.

2019 ◽  
Vol 34 (24) ◽  
pp. 1950130 ◽  
Author(s):  
Anish Ghoshal

Scalar dark matter (DM) in a theory introduces hierarchy problems, and suffers from the inability to predict the preferred mass range for the DM. In a WIMP-like minimal scalar DM setup we show that the infinite derivative theory can predict the DM mass and its coupling. The scale of nonlocality [Formula: see text] in such a theory in its lowermost limit (constrained by LHC) implies a DM mass [Formula: see text] TeV and a coupling with the Standard Model (SM) Higgs [Formula: see text]. Planned DM direct detection experiments reaching such sensitivity in the DM will effectively translate into lower bounds on the scale at which the nonlocality comes into the play.


2018 ◽  
Vol 182 ◽  
pp. 02016 ◽  
Author(s):  
Walter M. Bonivento

The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, deserving an explanation that could come from the discovery of new particles. Searches for new physics with accelerators are performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. The neutrino detector can also search for dark matter through its scattering off the electrons. We report the physics potential of the SHiP experiment.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Martin Bauer ◽  
Patrick Foldenauer ◽  
Peter Reimitz ◽  
Tilman Plehn

We systematically study models with light scalar and pseudoscalar dark matter candidates and their potential signals at the LHC. First, we derive cosmological bounds on models with the Standard Model Higgs mediator and with a new weak-scale mediator. Next, we study two processes inspired by the indirect and direct detection process topologies, now happening inside the LHC detectors. We find that LHC can observe very light dark matter over a huge mass range if it is produced in mediator decays and then scatters with the detector material to generate jets in the nuclear recoil.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Asmaa Abada ◽  
Nicolás Bernal ◽  
Antonio E. Cárcamo Hernández ◽  
Xabier Marcano ◽  
Gioacchino Piazza

AbstractWe propose an economical model addressing the generation of the Inverse Seesaw mechanism from the spontaneous breaking of a local $$U(1)_{B-L}$$ U ( 1 ) B - L , with the Majorana masses of the sterile neutrinos radiatively generated from the dark sector. The field content of the Standard Model is extended by neutral scalars and fermionic singlets, and the gauge group is extended with a $$U(1)_{B-L}$$ U ( 1 ) B - L and a discrete $${\mathbb {Z}}_4$$ Z 4 symmetries. Besides dynamically generating the Inverse Seesaw and thus small masses to the active neutrinos, our model offers two possible dark matter candidates, one scalar and one fermionic, stable thanks to a remnant $${\mathbb {Z}}_2$$ Z 2 symmetry. Our model complies with bounds and constraints form dark matter direct detection, invisible Higgs decays and $$Z'$$ Z ′ collider searches for masses of the dark sector at the TeV scale.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Soo-Min Choi ◽  
Hyun Min Lee ◽  
Bin Zhu

Abstract We consider a novel mechanism to realize exothermic dark matter with dark mesons in the limit of approximate flavor symmetry in a dark QCD. We introduce a local dark U(1)′ symmetry to communicate between dark mesons and the Standard Model via Z′ portal by partially gauging the dark flavor symmetry with flavor-dependent charges for cancelling chiral anomalies in the dark sector. After the dark local U(1)′ is broken spontaneously by the VEV of a dark Higgs, there appear small mass splittings between dark quarks, consequently, leading to small split masses for dark mesons, required to explain the electron recoil excess in XENON1T by the inelastic scattering between dark mesons and electron. We propose a concrete benchmark model for split dark mesons based on SU(3)L× SU(3)R/SU(3)V flavor symmetry and SU(Nc) color group and show that there exists a parameter space making a better fit to the XENON1T data with two correlated peaks from exothermic processes and satisfying the correct relic density, current experimental and theoretical constraints.


2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.


2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Partha Konar ◽  
Ananya Mukherjee ◽  
Abhijit Kumar Saha ◽  
Sudipta Show

Abstract We propose an appealing alternative scenario of leptogenesis assisted by dark sector which leads to the baryon asymmetry of the Universe satisfying all theoretical and experimental constraints. The dark sector carries a non minimal set up of singlet doublet fermionic dark matter extended with copies of a real singlet scalar field. A small Majorana mass term for the singlet dark fermion, in addition to the typical Dirac term, provides the more favourable dark matter of pseudo-Dirac type, capable of escaping the direct search. Such a construction also offers a formidable scope to radiative generation of active neutrino masses. In the presence of a (non)standard thermal history of the Universe, we perform the detailed dark matter phenomenology adopting the suitable benchmark scenarios, consistent with direct detection and neutrino oscillations data. Besides, we have demonstrated that the singlet scalars can go through CP-violating out of equilibrium decay, producing an ample amount of lepton asymmetry. Such an asymmetry then gets converted into the observed baryon asymmetry of the Universe through the non-perturbative sphaleron processes owing to the presence of the alternative cosmological background considered here. Unconventional thermal history of the Universe can thus aspire to lend a critical role both in the context of dark matter as well as in realizing baryogenesis.


2021 ◽  
Vol 508 (1) ◽  
pp. 828-841
Author(s):  
Chris Nagele ◽  
Hideyuki Umeda ◽  
Koh Takahashi ◽  
Takashi Yoshida ◽  
Kohsuke Sumiyoshi

ABSTRACT We calculate the neutrino signal from Population III supermassive star (SMS) collapse using a neutrino transfer code originally developed for core-collapse supernovae and massive star collapse. Using this code, we are able to investigate the SMS mass range thought to undergo neutrino trapping (∼104 M⊙), a mass range which has been neglected by previous works because of the difficulty of neutrino transfer. For models in this mass range, we observe a neutrino sphere with a large radius and low density compared to typical massive star neutrino spheres. We calculate the neutrino light curve emitted from this neutrino sphere. The resulting neutrino luminosity is significantly lower than the results of a previous analytical model. We briefly discuss the possibility of detecting a neutrino burst from an SMS or the neutrino background from many SMSs and conclude that the former is unlikely with current technology, unless the SMS collapse is located as close as 1 Mpc, while the latter is also unlikely even under very generous assumptions. However, the SMS neutrino background is still of interest as it may serve as a source of noise in proposed dark matter direct detection experiments.


2015 ◽  
Vol 24 (07) ◽  
pp. 1530019 ◽  
Author(s):  
Mathias Garny ◽  
Alejandro Ibarra ◽  
Stefan Vogl

Three main strategies are being pursued to search for nongravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early universe via thermal freeze-out.


Sign in / Sign up

Export Citation Format

Share Document