Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest

2000 ◽  
Vol 262 (6) ◽  
pp. 1132-1146 ◽  
Author(s):  
Y. Liu ◽  
G. Vidanes ◽  
Y. -C. Lin ◽  
S. Mori ◽  
W. Siede
1989 ◽  
Vol 9 (6) ◽  
pp. 2536-2543
Author(s):  
J Y Lee ◽  
D R Engelke

Saccharomyces cerevisiae cellular RNase P is composed of both protein and RNA components that are essential for activity. The isolated holoenzyme contains a highly structured RNA of 369 nucleotides that has extensive sequence similarities to the 286-nucleotide RNA associated with Schizosaccharomyces pombe RNase P but bears little resemblance to the analogous RNA sequences in procaryotes or S. cerevisiae mitochondria. Even so, the predicted secondary structure of S. cerevisiae RNA is strikingly similar to the bacterial phylogenetic consensus rather than to previously predicted structures of other eucaryotic RNase P RNAs.


2000 ◽  
Vol 20 (8) ◽  
pp. 2794-2802 ◽  
Author(s):  
Neptune Mizrahi ◽  
Claire Moore

ABSTRACT The poly(A) polymerase of the budding yeast Saccharomyces cerevisiae (Pap1) is a 64-kDa protein essential for the maturation of mRNA. We have found that a modified Pap1 of 90 kDa transiently appears in cells after release from α-factor-induced G1 arrest or from a hydroxyurea-induced S-phase arrest. While a small amount of modification occurs in hydroxyurea-arrested cells, fluorescence-activated cell sorting analysis and microscopic examination of bud formation indicate that the majority of modified enzyme is found at late S/G2 and disappears by the time cells have reached M phase. The reduction of the 90-kDa product upon phosphatase treatment indicates that the altered mobility is due to phosphorylation. A preparation containing primarily the phosphorylated Pap1 has no poly(A) addition activity, but this activity is restored by phosphatase treatment. A portion of Pap1 is also polyubiquitinated concurrent with phosphorylation. However, the bulk of the 64-kDa Pap1 is a stable protein with a half-life of 14 h. The timing, nature, and extent of Pap1 modification in comparison to the mitotic phosphorylation of mammalian poly(A) polymerase suggest an intriguing difference in the cell cycle regulation of this enzyme in yeast and mammalian systems.


Gene ◽  
1992 ◽  
Vol 119 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Brent L. Seaton ◽  
Jennifer Yucel ◽  
Per Sunnerhagen ◽  
Suresh Subramani

2002 ◽  
Vol 42 (5) ◽  
pp. 252-259 ◽  
Author(s):  
Kaoru Takegawa ◽  
Sanae Tokudomi ◽  
M. Shah Alam Bhuiyan ◽  
Mitsuaki Tabuchi ◽  
Yasuko Fujita ◽  
...  

1989 ◽  
Vol 9 (9) ◽  
pp. 4064-4068 ◽  
Author(s):  
C Wittenberg ◽  
S I Reed

Whereas the Cdc28 protein kinase of the budding yeast Saccharomyces cerevisiae plays an essential role in cell cycle progression during the G1 interval, a function in the progression from the G2 interval into M phase has been inferred for its homologs, including the Cdc2Hs protein kinase of humans. To better understand these apparently disparate roles, we constructed a yeast strain in which the resident CDC28 gene was replaced by its human homolog, CDC2Hs. This transgenic yeast strain was able to perform the G1 functions attributed to the Cdc28 protein kinase, including the ability to grow and divide normally, to respond to environmental signals that induce G1 arrest, and to regulate the Cdc2Hs protein kinase appropriately in response to these signals.


2001 ◽  
Vol 67 (9) ◽  
pp. 4144-4151 ◽  
Author(s):  
Carole Camarasa ◽  
Frédérique Bidard ◽  
Muriel Bony ◽  
Pierre Barre ◽  
Sylvie Dequin

ABSTRACT In Saccharomyces cerevisiae, l-malic acid transport is not carrier mediated and is limited to slow, simple diffusion of the undissociated acid. Expression in S. cerevisiae of the MAE1 gene, encodingSchizosaccharomyces pombe malate permease, markedly increased l-malic acid uptake in this yeast. In this strain, at pH 3.5 (encountered in industrial processes),l-malic acid uptake involves Mae1p-mediated transport of the monoanionic form of the acid (apparent kinetic parameters:V max = 8.7 nmol/mg/min;Km = 1.6 mM) and some simple diffusion of the undissociated l-malic acid (Kd = 0.057 min−1). As total l-malic acid transport involved only low levels of diffusion, the Mae1p permease was further characterized in the recombinant strain. l-Malic acid transport was reversible and accumulative and depended on both the transmembrane gradient of the monoanionic acid form and the ΔpH component of the proton motive force. Dicarboxylic acids with stearic occupation closely related to l-malic acid, such as maleic, oxaloacetic, malonic, succinic and fumaric acids, inhibitedl-malic acid uptake, suggesting that these compounds use the same carrier. We found that increasing external pH directly inhibited malate uptake, resulting in a lower initial rate of uptake and a lower level of substrate accumulation. In S. pombe, proton movements, as shown by internal acidification, accompanied malate uptake, consistent with the proton/dicarboxylate mechanism previously proposed. Surprisingly, no proton fluxes were observed during Mae1p-mediated l-malic acid import inS. cerevisiae, and intracellular pH remained constant. This suggests that, in S. cerevisiae, either there is a proton counterflow or the Mae1p permease functions differently from a proton/dicarboxylate symport.


2003 ◽  
Vol 23 (13) ◽  
pp. 4728-4737 ◽  
Author(s):  
Sarah Lambert ◽  
Sarah J. Mason ◽  
Louise J. Barber ◽  
John A. Hartley ◽  
Jackie A. Pearce ◽  
...  

ABSTRACT Drugs that produce covalent interstrand cross-links (ICLs) in DNA remain central to the treatment of cancer, but the cell cycle checkpoints activated by ICLs have received little attention. We have used the fission yeast, Schizosaccharomyces pombe, to elucidate the checkpoint responses to the ICL-inducing anticancer drugs nitrogen mustard and mitomycin C. First we confirmed that the repair pathways acting on ICLs in this yeast are similar to those in the main organisms studied to date (Escherichia coli, budding yeast, and mammalian cells), principally nucleotide excision repair and homologous recombination. We also identified and disrupted the S. pombe homologue of the Saccharomyces cerevisiae SNM1/PSO2 ICL repair gene and found that this activity is required for normal resistance to cross-linking agents, but not other forms of DNA damage. Survival and biochemical analysis indicated a key role for the “checkpoint Rad” family acting through the chk1-dependent DNA damage checkpoint in the ICL response. Rhp9-dependent phosphorylation of Chk1 correlates with G2 arrest following ICL induction. In cells able to bypass the G2 block, a second-cycle (S-phase) arrest was observed. Only a transient activation of the Cds1 DNA replication checkpoint factor occurs following ICL formation in wild-type cells, but this is increased and persists in G2 arrest-deficient mutants. This likely reflects the fraction of cells escaping the G2 damage checkpoint and arresting in the subsequent S phase due to ICL replication blocks. Disruption of cds1 confers increased resistance to ICLs, suggesting that this second-cycle S-phase arrest might be a lethal event.


Sign in / Sign up

Export Citation Format

Share Document